Skip to main content
Log in

In vivo species specificity of DNA polymerase α

  • Original Articles
  • Published:
Molecular and General Genetics MGG Aims and scope Submit manuscript

Abstract

The DNA polymerase a enzymes from human, and budding (Saccharomyces cerevisiae) and fission yeast (Schizosaccharomyces pombe) are homologous proteins involved in initiation and replication of chromosomal DNA. Sequence comparision of human DNA polymerase α with that of S. cerevisiae and S. pombe shows overall levels of amino acid sequence identity of 32% and 34%, respectively. We report here that, despite the sequence conservation among these three enzymes, functionally active human DNA polymerase a fails to rescue several different conditional lethal alleles of the budding yeast POL1 gene at nonpermissive temperature. Furthermore, human DNA polymerase α cannot complement a null allele of budding yeast POL1 either in germinating spores or in vegetatively growing cells. In fission yeast, functionally active human DNA polymerase α is also unable to complement the disrupted polα::ura4 + allele in germinating spores. Thus, in vivo, DNA polymerase α has stringent species specificity for initiation and replication of chromosomal DNA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

5-FOA:

5-fluoroorotic acid

PMSF:

p-toluenesulfonyl fluoride

References

  • Aguilera A, Klein HL (1988) Genetic control of intrachromosomal recombination. I. Isolation and genetic characterization of hyper-recombination mutations. Genetics 119:779–790

    Google Scholar 

  • Boeke JD, Trueheart J, Natsoulis G, Fink GR (1987) 5-Fluoroorotic acid as a selective agent in yeast molecular genetics. Methods Enzymol 154:164–175

    Google Scholar 

  • Budd M, Campbell JL (1987) Temperature-sensitive mutations in the yeast DNA polymerase I gene. Proc Natl Acad Sci USA 84:2838–2842

    Google Scholar 

  • Budd ME, Wittrup KD, Bailey JE, Campbell JL (1989) DNA polymerase I is required for premciotic DNA replication and sporulation but not for x-ray repair in Saccharomyces cerevisiae. Mol Cell Biol 9:365–376

    Google Scholar 

  • Burgers PMJ (1991) Saccharomyces cerevisiae replication factor C. II. Formation and activity of complex with the proliferating cell nuclear antigen and with DNA polymerase δ and ε. J Biol Chem 266:22698–22706

    Google Scholar 

  • Challberg MD, Kelly TJ (1989) Animal virus DNA replication. Annu Rev Biochem 58:671–717

    Google Scholar 

  • Carson MJ, Hartwell LH (1985) CDC17: an essential gene that prevents telomere elongation in yeast. Cell 42:249–257

    Google Scholar 

  • Copeland WC, Wang TSF (1991) Human DNA polymerase a overproduced from recombinant baculovirus-infected insect cells: structure and enzymatic characterization. J Biol Chem 266:22739–22748

    Google Scholar 

  • Copeland WC, Wang TSF (1993) Mutational analysis of the human DNA polymerase α. The most conserved region in α-like DNA polymerases is involved in metal specific catalysis. J Biol Chem 268:11028–11040

    Google Scholar 

  • Damagnez V, Tillit J, Recondo AM, Baldacci G (1991) The POLI gene from the fission yeast, Schizosaccharomyces pombe, shows conserved amino acid blocks specific for eukaryotic DNA polymerse α. Mol Gen Genet 226:182–189

    Google Scholar 

  • Dornreiter I, Hoss A, Arthur AK, Fanning E (1990) SV40 T antigen binds directly to the large subunit of purified DNA polymerase α. EMBO J 9:3329–3336

    Google Scholar 

  • Dornreiter I, Erdile LF, Gilbert IU, von Winkler D, Kelley TJ, Fanning E (1992) Interaction of DNA polymerase α-primase with cellular replication protein A and SV40 T antigen. EMBO J 11:769–776

    Google Scholar 

  • Dornreiter I, Copeland WC, Wang TSF (1993) Initiation of simian virus 40 DNA replication requires the interaction of a specific domain of human DNA polymerase a with large T antigen. Mol Cell Biol 13:809–820

    Google Scholar 

  • Gutz H, Heslot H, Leupold U, Loprieno N (1974) Schizosaccharomyces pombe. In: King RC (ed) Handbook of genetics Plenum, New York, 395–446

    Google Scholar 

  • Hartwell LH (1967) Macromolecule synthesis in temperaturesensitive mutants of yeast. J Bacteriol 93:1662–1670

    Google Scholar 

  • Hartwell LH (1973) Three additional genes required for deoxynucleic acid synthesis in Saccharomyces cerevisiae. J Bacteriol 115:966–974

    Google Scholar 

  • Hartwell LH, Smith D (1985) Altered fidelity of mitotic chromosome transmission in cell cycle mutants of Saccharomyces cerevisiae. Genetics 110:381–395

    Google Scholar 

  • Hsi KL, Copeland WC, Wang TSF (1990) Human DNA polymerase α catalytic polypeptide binds ConA and RCA and contains a specific labile site in the N-terminus. Nucleic Acids Res 18:6231–6237

    Google Scholar 

  • Hurwitz J, Dean FB, Kwong AD, Lee SH (1990) The in vitro replication of DNA containing the SV40 origin. J Biol Chem 265:18043–18046

    Google Scholar 

  • Johnson LM, Synder M, Chang LMS, Davis RW, Campbell JL (1985) Isolation of the gene encoding yeast DNA polymerase I. Cell 43:369–377

    Google Scholar 

  • Jones EW (1977) Protease mutants of Saccharomyces cerevisiae. Genetics 85:22–33

    Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    PubMed  Google Scholar 

  • Lucchini G, Mazza C, Scacheri E, Plevani P (1988) Genetic mapping of the Saccharomyces cerevisiae DNA polymerase I gene and characterization of a polI temperature-sensitive mutant altered in DNA primase-polymerase complex stability. Mol Gen Genet 212:459–465

    Google Scholar 

  • Lucchini G, Falconi MM, Pizzagalli A, Aguilera A, Klein HL, Plevani P (1990) Nucleotide sequence and characterization of temperature-sensitive polI mutants of Saccharomyces cerevisiae. Gene 90:99–104

    Google Scholar 

  • Maniatis T, Fritsch EF, Sambrook J (1982) Molecular cloning: A laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York

    Google Scholar 

  • Miller MA, Korn D, Wang TSF (1988) The evolutionary conservation of DNA polymerase α. Nucleic Acids Res 16:7961–7973

    Google Scholar 

  • Moreno S, Klar A, Nurse P (1991) Molecular biology of fission yeast S. pombe. In: Guthrie C, Fink GR (eds) Guide to yeast genetics and molecular biology. Academic Press, pp 795–823

  • Murakami Y, Wobbe CR, Weissbach L, Dean FB, Hurwitz J (1986) Role of DNA polymerase α and DNA primase in simian virus 40 DNA replication in vitro. Proc Natl Acad Sci USA 83:2869–2873

    Google Scholar 

  • Panzeri L, Landonio L, Stotz A, Philippsen P (1985) Role of conserved sequence elements in yeast centromere DNA. EMBO J 4:1867–1874

    Google Scholar 

  • Park H, Francesconi S, Wang TSF (1993) Cell cycle expression of two replicatioe DNA polymerases α and δ from Schizosaccharomyces pombe. Mol Biol Cell 4:145–157

    Google Scholar 

  • Pizzagalli A, Valsasnini P, Plevani P, Lucchini G (1988) DNA polymerase I gene of Saccharomyces cerevisiae: nucleotide sequence, mapping of temperature-sensitive mutation and protein homology with other DNA polymerases. Proc Natl Acad Sci USA 85:3772–3776

    Google Scholar 

  • Russell P (1989) Gene cloning and expression in fission yeast. In: Nasim A, Young P, Johnson BF (eds) Molecular biology of the fission yeast. Academic Press, San Diego, pp 243–271

    Google Scholar 

  • Santocanale C, Locati F, Falconi MM, Piseri A, Tseng BY, Zucchini G, Plevani P (1992) Overproduction and functional analysis of DNA primase subunits from yeast and mouse. Gene 113:199–205

    Google Scholar 

  • Sherman F, Fink GR, Hicks JB (1986) Methods in yeast genetics. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York

    Google Scholar 

  • Stillman B (1989) Initiation of eukaryotic DNA replication in vitro. Annu Rev Cell Biol 5:197–245

    Google Scholar 

  • Sung P, Prakash L, Weber S, Prakash S (1987) The RAD3 gene of Saccharomyces cerevisiae encodes a DNA-dependent ATPase. Proc Natl Acad Sci USA 84:6045–6049

    Google Scholar 

  • Tanaka S, Hu SZ, Wang TSF, Korn D (1982) Preparation and preliminary characterization of monoclonal antibodies against human DNA polymerase α. J Biol Chem 257:8386–8390

    Google Scholar 

  • Tsurimoto T, Stillman B (1990) Functions of replication factor C and proliferating-cell nuclear antigen: functional similarity of DNA polymerase accessory proteins from human cells and bacteriophage T4. Proc Natl Acad Sci USA 87:1023–1027

    Google Scholar 

  • Tsurimoto T, Melendy T, Stillman B (1990) Sequential initiation of lagging and leading strand synthesis by two different polymerase complexes at the SV40 DNA replication origin. Nature 346:534–539

    Google Scholar 

  • Wang TSF (1991) Eukaryotic DNA polymerases. Annu Rev Biochem 60:513–552

    Google Scholar 

  • Wang TSF, Hu SZ, Korn D (1984) DNA primase from KB cells. Characterization of a primase activity tightly associated with immunoaffinity-purified DNA polymerase α. J Biol Chem 259:1854–1865

    Google Scholar 

  • Wang TSF, Wong SW, Korn D (1989) Human DNA polymerase α: predicted functional domains and relationships with viral DNA polymerases. FASEB J 3:14–21

    Google Scholar 

  • Wilcox SA, Fuller RS (1991) Post-translational processing of the prohormone-cleaving Kex2 protease in Saccharomyces cerevisiae secretory pathway. J Cell Biol 115:297–307

    Google Scholar 

  • Winston F, Chumley F, Fink GR (1983) Eviction and transplacement of mutant genes in yeast. Methods Enzymol 101:211–228

    Google Scholar 

  • Wong SW, Wahl AF, Yuan PM, Arai N, Pearson BE, Arai K-I, Korn D, Hunkapiller MW, Wang TSF (1988) Human DNA polymerase α gene expression is cell proliferation dependent and its primary structure is similar to both prokaryotic and eukaryotic replicative DNA polymerases. EMBO J 7:37–47

    Google Scholar 

  • Zubenko GS, Mitchell AP, Jones EP (1980) Mapping of the protease B structural gene PRB1 in Saccharomyces cerevisiae and identification of nonsense alleles within the locus. Genetics 96:137–146

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by B. Kilbey

Rights and permissions

Reprints and permissions

About this article

Cite this article

Francesconi, S., Copeland, W.C. & Wang, T.SF. In vivo species specificity of DNA polymerase α. Molec. Gen. Genet. 241, 457–466 (1993). https://doi.org/10.1007/BF00284700

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00284700

Key words

Navigation