Skip to main content
Log in

Thiosulfate and tetrathionate degradation as well as biofilm generation by Thiobacillus intermedius and Thiobacillus versutus studied by microcalorimetry, HPLC, and ion-pair chromatography

  • Original Papers
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

The growth of Thiobacillus (T.) intermedius strain K12 and Thiobacillus versutus strain DSM 582 on thiosulfate and tetrathionate was studied combining on-line measurements of metabolic activity and sulfur compound analysis. Most results indicate that T. intermedius oxidized thiosulfate via tetrathionate to sulfate. Concomittantly, sulfur compound intermediates like triand pentathionate were detectable. The formation is probably the result of highly reactive sulfane monosulfonic acids. The formation of tetrathionate allows the cells to buffer temporarily the proton excretion from sulfuric acid production. With T. versutus intermediate sulfur compounds were not detectable, however, sulfur was detectable. The possibility of a thiosulfate oxidation via dithionate, S2O sup2-inf6 , is discussed. The on-line measurement of metabolic activity by microcalorimetry enabled us to detect that cells of T. intermedius adhere to surfaces and produce a biofilm by a metabolic process whereas those of T. versutus fail to do so. The importance of the finding is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • BelaichJP (1980) Growth and metabolism in bacteria. In: BeezerAE (ed) Biological microcalorimetry. Academic Press, London, pp 1–42

    Google Scholar 

  • BradfordMM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein, utilizing the principle of protein-dye binding. Ann Biochem 72: 248–254

    Google Scholar 

  • CerlettiP (1986) Seeking a better job for an under-employed enzyme, rhodanese. Trends Biochem Sci 11: 369–372

    Google Scholar 

  • CharlesAM, SuzukiI (1966) Mechanism of thiosulfate oxidation by Thiobacillus novellus. Biochim Biophys Acta 128: 510–521

    Google Scholar 

  • EmmelT, SandW, KönigWA, BockE (1986) Evidence for the existence of a sulfur oxygenase in Sulfolobus brierleyi. J Gen Microbiol 132: 3415–3420

    Google Scholar 

  • FehérF (1975) Scltwefel, Selen, Tellur. In: BrauerG (ed) Handbuch der Präparativen Anorganischen Chemie, part I 2nd edn. Enke, Stuttgart, p 356

    Google Scholar 

  • Flemming HC (1992) Biofilme, Biofouling und Mikrobielle Schädigung von Werkstoffen. Habilitation thesis, Universität Stuttgart

  • Gmelin (1960) Handbuch der Anorganischen Chemie, 8. Aufl. Schwefel, Teil B2. Verlag Chemie, Weinheim, pp 969–1046

    Google Scholar 

  • GoodmanA, RalphBJ (1980) A microcalorimetric study of the metabolic activity of two thiobacillus species. In: TrudingerPA, WalterMR, RalphBJ (eds) Biogeochemistry of ancient and modern environments. Springer, Berlin Heidelberg New York pp 477–483

    Google Scholar 

  • GustafssonL, NorkransB (1976) On the mechanism of salt tolerance. Arch Microbiol 110: 177–183

    Google Scholar 

  • Harrison jr AP (1983) Genomic and physiological comparison between heterotrophic thiobacilli and Acdiphilium cryptum, Thiobacillus versutus sp. nov., and Thiobacillus acidophilus nom rev. Int J Syst Bacteriol 33: 211–217

    Google Scholar 

  • HumphreyAB, MarshallKC (1984) The triggering effect of surfaces and surfactants on heat output, oxygen consumption and size reduction of a starving marine Vibrio. Arch Microbiol 140: 166–170

    Google Scholar 

  • KellyDP (1989) Physiology and biochemistry of unicellular sulfur bacteria. In: SchlegelHG, BowienB (eds) Autotrophic bacteria. Science Tech Publ, Madison Ill., pp 193–218

    Google Scholar 

  • KlimmekO, KrögerA, SteudelR, HoldtG (1991) Growth of Wolinella succinogenes with polysulfide as terminal acceptor of phosphorylative electron transport. Arch Microbiol 155: 177–182

    Google Scholar 

  • LuW-P (1986) A periplasmic location for the thiosulfate-oxidizing multienzyme system from Thiobacillus versutus. FEMS Microbiol Lett 34: 313–317

    Google Scholar 

  • LuW-P, KellyDP (1988) Cellular location and partial purification of the thiosulphate-oxidizing enzyme and trithionate hydrolase from Thiobacillus tepidarius. J Gen Microbiol 134: 877–885

    Google Scholar 

  • LuW-P, SwobodaBEP, KellyDP (1985) Properties of the thiosulphate-oxidizing multienzyme system from Thiobacillus versutus. Biochim Biophys Acta 828: 116–122

    Google Scholar 

  • MarshallKC (1992) Biofilms: an overview of bacterial adhesion, activity and control at surfaces. ASM News 58: 202–207

    Google Scholar 

  • MeulenbergR, PronkJT, FrankJ, HazeuW, BosP, KuenenJG (1992) Purification and partial characterization of a thermostable trithionate hydrolase from the acidophilic sulphur oxidizer Thiobacillus acidophilus. Eur J Biochem 209: 367–374; Personal communication to R.S.

    Google Scholar 

  • MildeK, SandW, WolffW, BockE (1983) Thiobacilli of the corroded concrete walls of the Hamburg sewer system. J Gen Microbiol 129: 1327–1333

    Google Scholar 

  • OhJK, SuzukiI (1977) Isolation and characterization of a membrane-associated thiosulfate-oxidizing system of Thiobacillus novellus. J Gen Microbiol 99: 397–412

    Google Scholar 

  • Okuzumim, KitaY (1965) Studies on biochemistry of the thiobacilli, part VI. Oxidation of thiosulfate to tetrathionate by T. thiooxidans. Agric Biol Chem 29: 1063–1068

    Google Scholar 

  • OsNMvan, HaandrikmanG (1987) Liquid-flow microcalorimetry of surfactant adsorption onto sandstone. 1. Experimental method and initial results. Langmuir 3: 1051–1056

    Google Scholar 

  • Perkin-Elmer (1988) Gerätehandbuch für das Atomabsorptions-Spektrometer 1100B. Technische Dokumentation, Überlingen, Germany

  • PooleRK, HaddockBA (1975) Microcalorimetric measurements of heat evolution and their correlation with oxygen uptake in Escherichia coli genotypically and phenotypically modified transport chains. FEBS Lett 58: 249–253

    Google Scholar 

  • PronkJT, MeulenbergR, HazeuW, BosP, KuenenJG (1990) Oxidation of reduced inorganic sulphur compounds by acidophilic thiobacillis. FEMS Microbiol Rev 75: 293–306

    Google Scholar 

  • SandW (1987) Mikrokalorimetrie — ein modernes Meßverfahren für biologische Frangestellungen. Forum Mikrobiol 10: 220–223

    Google Scholar 

  • SchröterAW, SandW (1988) Microcalorimetry — a modern technique for microbiology and biohydrometallurgy: In: NorrisPR, KellyDP (eds) Biohydrometallurgy. Science and Technology Letters, Kew, pp 127–133

    Google Scholar 

  • SchröterAW, SandW (1989) Investigation on leaching bacteria by microcalorimetry: In: SalleyJ, McCreadyR, WichlaczPC (eds) Biohydrometallurgy. CANMET, Ottawa, pp 427–438

    Google Scholar 

  • SchröterAW, SandW (1993) Estimations on the degradability of ores and bacterial leaching activity using short-time microcalorimetric tests. FEMS Microbiol Rev 11: 79–86

    Google Scholar 

  • SinhaDB, WaldenCC (1966) Formation of polythionates and their interrelationships during oxidation of thiosulfate by Thiobacillus ferrooxidans. Can J Microbiol 12: 1041–1054

    Google Scholar 

  • SpectorT (1978) Refinement of Coomassie-blue method of protein quantitation. Ann Biochem 86: 142–146

    Google Scholar 

  • SteudelR, AlbertsenA (1992) Determination of cystein-S-sulfonate (RSSO sup-inf3 ) by ion-pair chromatography and its formation by autoxidation of cysteine persulfide (RSS-). J Chromatogr 606: 260–263

    Google Scholar 

  • SteudelR, MäusleH-J, RosenbauerD, MöckelH, FreyholdtT (1981) Separation and determination of homocyclic sulfur molecules by high pressure liquid chromatography — detection of new sulfur rings. Angew Chem 93: 402–404 [Angew Chem Int Ed Engl 20: 394–395]

    Google Scholar 

  • SteudelR, HoldtG, GöbelT, HazeuW (1987) Chromatographic separation of higher polythionates SnO sup2-inf6 (n=3...22) and their detection in cultures of Thiobacillus ferrooxidans; molecular composition of bacterial sulfur excretions. Angew Chem 99: 143–146 [Angew Chem Int Ed Engl 26: 151–153]

    Google Scholar 

  • SteudelR, HoldtG, VisscherPT, GemerdenHvan (1990) Search for polythionates in cultures of Chromatium vinosum after sulfide incubation. Arch Microbiol 153: 432–437

    Google Scholar 

  • TrudingerPA (1967) The metabolism of inorganic sulphur compounds by thiobacilli. Rev Pure Appl Chem 17: 1–24

    Google Scholar 

  • VishniacWV, SanterM (1957) The thiobacilli. Bacteriol Rev. 21: 195–610

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wentzien, S., Sand, W., Albertsen, A. et al. Thiosulfate and tetrathionate degradation as well as biofilm generation by Thiobacillus intermedius and Thiobacillus versutus studied by microcalorimetry, HPLC, and ion-pair chromatography. Arch. Microbiol. 161, 116–125 (1994). https://doi.org/10.1007/BF00276471

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00276471

Key words

Navigation