Skip to main content
Log in

Similar molecular deletions on chromosome 15q11.2 are encountered in both the Prader-Willi and Angelman syndromes

  • Original Investigations
  • Published:
Human Genetics Aims and scope Submit manuscript

Summary

Comparative molecular analysis of chromosome 15, sub-band q11.2 of patients with the Prader-Willi or Angelman syndromes demonstrates that they have a similar deletion. An hypothesis is presented that attempts to explain the tremendous degree of clinical heterogeneity in these diverse deletion-associated syndromes based on abnormal haplotypes present on the cytogenetically normal homolog. This hypothesis also addresses genetic similarities between patients who have deletion and those who have the inv dup (15) by postulating that these syndromes are caused by relative dosage ratios of normal versus abnormal alleles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aldridge J, Kunkel L, Bruns G, Tantravahi U, Lalande M, Brewster T, Moreau E, Wilson M, Bromley W, Roderick T, Latt SA (1984) A strategy to reveal high frequency RFLPs along the human X chromosome in human XX males. Am J Hum Genet 36:546–564

    Google Scholar 

  • Artzt K, Shin HS, Bennett D (1982) Gene mapping within the T/t complex of the mouse. II. Anomalous position of the H-2 complex in t haplotypes. Cell 28:471–476

    Google Scholar 

  • Baraitser M, Patton M, Lam STS, Brett EM, Wilson J (1987) The Angelman (Happy Puppet) syndrome: is it autosomal recessive? Clin Genet 31:323–330

    Google Scholar 

  • Brookwell R, Veleba A (1987) Proximal 15q variant with normal phenotype in three unrelated individuals. Clin Genet 31:311–314

    Google Scholar 

  • Buckton KE, Spowart G, Newton MS, Evans HJ (1985) Forty four probands with an additional “marker” chromosome. Hum Genet 69:353–370

    Google Scholar 

  • Burke CM, Kouseff BG, Gleeson M, O'Connell BM, Devlin JG (1987) Familial Prader-Willi syndrome. Arch Intern Med 147: 673–675

    Google Scholar 

  • Butler MG, Meaney FJ, Palmer CG (1986) Clinical and cytogenetic survey of 39 individuals with Prader-Labhart-Willi syndrome. Am J Med Genet 23:793–809

    Google Scholar 

  • Cohen DM, Green JG, Miller J, Gorlin RJ, Reed JA (1987) Acrocephalopolysyndactyly type II — Carpenter syndrome: clinical spectrum and an attempt at unification with Goodman and Summitt syndromes. Am J Med Genet 28:311–324

    Google Scholar 

  • Cohen MM Jr, Hall BD, Smith DW, Graham CB, Lampert KJ (1973) A new syndrome with hypotonia, obesity, mental deficiency, and facial, oral, ocular, and limb anomalies. J Pediatr 83:280–284

    Google Scholar 

  • Donlon TA, Lalande M, Wyman A, Bruns G, Latt SA (1986) Instability of molecular probes associated with the chromosome 15 instability in the Prader-Willi syndrome. Proc Natl Acad Sci USA 83:4408–4412

    Google Scholar 

  • Donlon TA, Lalande M, Bruns G, Wharton R, Latt SA (1987) Paracentromeric mapping of 11 cloned DNA segments from chromosome 15. (9th International Workshop on Human Gene Mapping) Cytogenet Cell Genet 46:607

    Google Scholar 

  • Endo M, Tasaka Y, Matsuura N, Matsuda I (1976) Laurence-Moon-Biedl syndrome (?) and Prader-Willi syndrome (?) in a single family. Eur J Pediatr 123:269–276

    Google Scholar 

  • Feinberg AP, Vogelstein B (1983) A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity. Anal Biochem 132:6–13

    Google Scholar 

  • Fornace AJ, Cummings DE, Comeau CM, Kant JA, Crabtree GR (1984) Single-copy inverted repeats associated with regional genetic duplications in gamma fibrinogen and immunoglobulin genes. Science 224:161–164

    Google Scholar 

  • Fraccaro M, Zuffardi O, Bühler E, Schinzel A, Simoni G, Witkowski R, Bonifaci E, Caufin D, Cignacco G, Delendi N, Gargantini L, Losanowa T, Marca L, Ullrich E, Vigi V (1983) Deficiency, transposition, and duplication of one 15q region may be alternatively associated with Prader-Willi (or a similar) syndrome. Analysis of seven cases after varying ascertainment. Hum Genet 64:388–394

    Google Scholar 

  • France HF de, Beemer FA, Ippel PF (1984) Duplication in chromosome 15q in a boy with the Prader-Willi syndrome; further cytogenetic confusion. Clin Genet 26:379–382

    Google Scholar 

  • Führmann-Rieger A, Kohler A, Führmann W (1984) Duplication or insertion in 15q11-13 associated with mental retardation — short stature and obsity — Prader-Willi or Cohen syndrome? Clin Genet 25:347–353

    Google Scholar 

  • Greenberg F, Ledbetter DH (1987) Deletions of proximal 15q without Prader-Willi syndrome. Am J Med Genet 28:813–820

    Google Scholar 

  • Greenberg F, El-Hibri H, Ledbetter DH (1983) A jumping translocation of chromosome 15: a clue to the etiology of Prader-Willi syndrome? Pediatr Res 17: 211A (abstr)

  • Herrmann B, Bucan M, Mains PE, Frischauf AM, Silver LM, Lehrach H (1986) Genetic analysis of the proximal portion of the mouse t complex: evidence for a second inversion within t haplotypes. Cell 44:469–476

    Google Scholar 

  • Hood OJ, Rouse BM, Lockhart LH, Bodensteiner JB (1986) Proximal duplications of chromosome 15: clinical dilemmas. Clin Genet 29:234–240

    Google Scholar 

  • Jennings MW, Jones RW, Wood WG, Weatherall DJ (1985) Analysis of an inversion within the human beta globin gene cluster. Nucleic Acids Res 13:2897–2906

    Google Scholar 

  • Kaplan LC, Wharton R, Elias E, Mandell F, Donlon T, Latt S (1987) Clinical heterogeneity associated with deletions in the long arm of chromosome 15: report of 3 new cases and their possible genetic significance. Am J Med Genet 28:45–53

    Google Scholar 

  • Lalande M, Dryja TP, Schreck RR, Shipley J, Flint A, Latt SA (1984) Isolation of human chromosome 13-specific DNA sequences cloned from flow sorted chromosomes and potentially linked to the retinoblastoma locus. Cancer Genet Cytogenet 13:283–295

    Google Scholar 

  • Lalande M, Schreck RR, Hoffman R, Latt SA (1985) Identification of inverted duplicated no. 15 chromosomes using bivariate flow cytometric analysis. Cytometry 6:1–6

    Google Scholar 

  • Ledbetter DH, Riccardi VM, Airhart SD, Strobel RJ, Keenan BS, Crawford JD (1981) Deletions of chromosome 15 as a cause of the Prader-Willi syndrome. N Engl J Med 304:325–329

    Google Scholar 

  • Ledbetter DH, Mascarello JT, Riccardi VM, Harper VD, Airhart SD, Strobel RJ (1982) Chromosome 15 abnormalities and the Prader-Willi syndrome: a follow-up report of 40 cases. Am J Hum Genet 34:278–285

    Google Scholar 

  • Lehrman MA, Russell DW, Goldstein JL, Brown MS (1986) Exon-Alu recombination deletes 5 kilobases from the low density lipoprotein receptor gene, producing a null phenotype in familial hypercholesterolemia. Proc Natl Acad Sci USA 83:3679–3683

    Google Scholar 

  • Lejeune J, Maunory C, Prieur M (1979) Translocation sauteuse (5p;15q),(8q;15q)(12q;15q). Ann Génét (Paris) 22:210–213

    Google Scholar 

  • Lubinsky M, Zellweger H, Greenswag L, Larson G, Hansmann I, Ledbetter D (1987) Familial Prader-Willi syndrome with apparently normal chromosomes. Am J Med Genet 28:37–43

    Google Scholar 

  • Magenis RE, Brown MG, Lacey DA, Budden S, LaFranchi S (1987) Is Angelman syndrome an alternate result of del(15)(q11q13)? Am J Med Genet 28:829–828

    Google Scholar 

  • Mattei JF, Mattei MG, Giraud F (1983) Prader-Willi syndrome and chromosome 15. Hum Genet 64:356–363

    Google Scholar 

  • Mattei MG, Souiah N, Mattei JF (1984) Chromosome 15 anomalies and the Prader-Willi syndrome: cytogenetic analysis. Hum Genet 66:313–334

    Google Scholar 

  • McKusick VA (1983) Mendelian inheritance in man, 6th edn. Johns Hopkins University Press, Baltimore

    Google Scholar 

  • Pettigrew AL, Gollin SM, Greenberg F, Riccardi VM, Ledbetter DH (1987) Duplication of proximal 15q as a cause of Prader-Willi syndrome. Am J Med Genet 28:791–802

    Google Scholar 

  • Prader A, Labhart A, Willi H (1956) Ein Syndrom von Adipositas, Kleinwuchs, Kryptorchismus und Oligophreni nach myatonieartigem Zustand im Neugeborenenalter. Schweiz Med Wochenschr 86:1260–1261

    Google Scholar 

  • Protter AA, Levy-Wilson B, Miller J, Bencen G, White T, Seilhawer J (1984) Isolation and sequence-analysis of the human apolipoprotein CIII gene and the intergenic region between the Apo-AI and Apo-CIII genes. DNA 3:449–456

    Google Scholar 

  • Richards JE, Gilliam AC, Shen A, Tucker PW, Blattner FR (1983) Unusual sequences in the murine immunoglobulin μ-δ heavy-chain region. Nature 306:483

    Google Scholar 

  • Rouyer F, Simmler M, Page DC, Weissenbach J (1987) A sex chromosome rearrangement in a human XX male caused by Alu-Alu recombination. Cell 51:417–425

    Google Scholar 

  • Sarvetnick N, Fox HS, Mann EA, Mains PE, Elliot RW, Silver LM (1986) Nonhomologous pairing in mice heterozygous for a t haplotype can produce recombinant chromosomes with duplications and deletions. Genetics 113:723–734

    Google Scholar 

  • Schreck RR, Breg WR, Erlanger BF, Miller OJ (1977) Preferential derivation of abnormal human G-group-like chromosomes from chromosome 15. Hum Genet 36:1–12

    Google Scholar 

  • Schwartz S, Max SR, Panny SR, Cohen MM (1985) Deletions of proximal 15q and non-classical Prader-Willi syndrome phenotypes. Am J Med Genet 20:255–263

    Google Scholar 

  • Shin HS, Flaherty L, Artzt K, Bennett D, Ravetch J (1983) Inversion in the H-2 complex of t-haplotypes in mice. Nature 306:380–383

    Google Scholar 

  • Silver LM (1985) Mouse t haplotypes. Annu Rev Genet 19:179–208

    Google Scholar 

  • Smith A, Noel M (1980) A girl with the Prader-Willi syndrome and Robertsonian translocation 45,XX,t(14;15)(p11;q11) which was present in three normal family members. Hum Genet 55:271–273

    Google Scholar 

  • Smith D (1982) Recognizable patterns of human malformation. Saunders, Philadelphia

    Google Scholar 

  • Stetten G, Sroka-Zaczek B, Corson VL (1981) Prenatal detection of an accessory chromosome identified as an inversion duplication (15). Hum Genet 57:357–359

    Google Scholar 

  • Tantravahi U, Kirschner DA, Beauregard L, Page L, Kunkel L, Latt SA (1983) Cytologic and molecular analysis of 46,XXq- cells to identify a DNA segment that might serve as a probe for a putative human X chromosome inactivation center. Hum Genet 64:33–38

    Google Scholar 

  • Willems PJ, Kijkstra I, Brouwer OF, Smit GPA (1987) Recurrence risk in the Angelman (“Happy Puppet”) syndrome. Am J Med Genet 27:773–780

    Google Scholar 

  • Wisniewski LP, Hassold T, Heffelfinger J, Higgins JV (1979) Cytogenetic and clinical studies in five cases of inv dup(15). Hum Genet 50:259–270

    Google Scholar 

  • Wisniewski LP, Witt ME, Ginsberg-Fellner F, Wilner J, Desnick RJ (1980) Prader-Willi syndrome and a bisatellited derivative of chromosome 15. Clin Genet 18:42–47

    Google Scholar 

  • Zellweger H, Soper RT (1979) The Prader-Willi syndrome. Med Hyg 37:3338–3345

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Donlon, T.A. Similar molecular deletions on chromosome 15q11.2 are encountered in both the Prader-Willi and Angelman syndromes. Hum Genet 80, 322–328 (1988). https://doi.org/10.1007/BF00273644

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00273644

Keywords

Navigation