Skip to main content
Log in

Closely linked lesions in a region of the X chromosome affect central and peripheral steps in gustatory processing in Drosophila

  • Published:
Molecular and General Genetics MGG Aims and scope Submit manuscript

Summary

We have analyzed a set of closely linked mutations on the X chromosome of Drosophila that lead to defects in gustatory behavior. The mutations map to a small region of the X chromosome between 10E1–4. Two distinct complementation groups, gustB and gustD, map to the ends of this region. These groups show complex complementation patterns with the mutations gustC and GT-1, which also map to this region. We describe the behavioral and electrophysiological properties of the mutants. These mutations affect peripheral receptor properties as well as more central processing steps in the gustatory pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arora K, Rodrigues V, Joshi S, Siddiqi O (1987) A gene affecting the specificity of chemosensory neurons of Drosophila. Nature 330:62–63

    Google Scholar 

  • Balakrishnan R, Rodrigues V (1991) The Shaker and shaking-B genes specify elements in the processing of gustatory information in Drosophila melanogaster. J Exp Biol, in press

  • Beall CA, Seponski MA, Fyrberg EA (1989) Genetic dissection of Drosophila myofibril formation: effect of actin and myosin heavy chain null alleles. Genes Dev 3:131–140

    Google Scholar 

  • Crnjar R, Cancedda A, Angicy AM, Liscia A, Petra P (1983) Electrophysiological responses of chemosensilla of a wild type and a salt-tolerant mutant (LOT-94) of Drosophila melanogaster Meigen. Monitore Zool Ital (NS) 17:387–394

    Google Scholar 

  • Deak I (1976) Demonstration of sensory neurons in the ectopic cuticle of spineless-aristapedia, a homeotic mutant of Drosophila. Nature 260:252–254

    Google Scholar 

  • Dethier VG (1976) The hungry fly. Harvard University Press, Cambridge, Massachusetts

    Google Scholar 

  • Dorn GL, Burdick AB (1962) On the recombinational structure and complementation relationship in the m-dy complex of Drosophila rnelanogaster. Genetics 47:503–518

    Google Scholar 

  • Falk R (1979) Taste responses of Drosophila melanogaster. J Insect Physiol 25:87–91

    Google Scholar 

  • Falk R, Atidia J (1975 Mutation affecting taste perception in Drosophila melanogaster. Nature 254:325–326

    Google Scholar 

  • Falk R, Blesier-Avivi N, Atidia J (1976) Labellar taste organs of Drosophila melanogaster. J Morphol 150:327–341

    Google Scholar 

  • Fujishiro N, Kijima H, Morita H (1984) Impulse frequency and action potential amplitude in labellar chemosensory neurons of Drosophila melanogaster. J Insect Physiol 30:317–325

    Google Scholar 

  • Garcia-Bellido (1979) Genetic analysis of the achaete-scute system of Drosophila melanogaster. Genetics 91:491–520

    Google Scholar 

  • Hartenstein V, Posakony JW (1989) Development of adult sensilla on the wing and notum of Drosophila melanogaster. Development 107:389–405

    Google Scholar 

  • Hodgson ES, Lettvin JY, Roeder KD (1955) Physiology of a primary chemoreceptor unit. Science 122:417–418

    Google Scholar 

  • Homyk T, Emerson CP (1988) Functional interactions between unlinked muscle genes within haplo-insufficient regions of the Drosophila genome. Genetics 119:105–121

    Google Scholar 

  • Isono K, Kikuchi T (1974) Autosomal recessive mutation in sugar response of Drosophila. Nature 248:243–244

    Google Scholar 

  • Last RL, Maddock JR, Woolford JL (1987) Evidence for the related function of the RNA genes of Saccharomyces cerevisiae. Genetics 117:619–631

    Google Scholar 

  • Lewis E, Bacher F (1968) Method of feeding ethyl methane sulfonate to Drosophila males. Dros Inf Serv 43:193

    Google Scholar 

  • Lindsley DL, Grell EH (1968) Genetic variations of Drosophila melanogaster. Carnegie Inst Wash Publ

  • Lindsley DL, Zimm G (1987) The genome of Drosophila melanogaster. Part 3: Rearrangements. Dros Inf Serv 65

  • Miyakawa Y (1981) Bimodal response in a chemotactic behavior of Drosophila larvae to monovalent salts. J Insect Physiol 27:387–392

    Google Scholar 

  • Morea M (1985) Deleton mapping of a new gustatory mutant in Drosophila melanogaster. Experientia 41:1381–1384

    Google Scholar 

  • Nayak SV, Singh RN (1983) Sensilla on the tarsal segments and mouthparts of adult Drosophila melanogaster. Int J Insect Morphol Embryol 12:273–291

    Google Scholar 

  • Nayak SV, Singh RN (1985) Primary sensory projections from the labella to the brain of Drosophila melanogaster Meigen (Diptera: Drosophilidiae). Int J Insect Morphol Embryol 14:115–129

    Google Scholar 

  • Rodrigues V, Siddiqi O (1978) Genetic analysis of chemosensory pathway. Proc Indian Acad Sci 87:147–160

    Google Scholar 

  • Rodrigues V, Siddiqi O (1981) A gustatory mutant of Drosophila defective in gustatory receptors. Mot Gen Genet 181:406–408

    Google Scholar 

  • Ruiz-Gomez M, Modolell J (1987) Deletion analysis of the achaetescute locus of Drosophila melanogaster. Genes Dev 1:1238–1246

    Google Scholar 

  • Siddiqi O, Rodrigues V (1980) Genetic analysis of a complex chemoreceptor. In: Siddiqi O, Babu P, Hall L, Hall JC (eds) Development and neurobiology of Drosophila. Plenum Publ. Corp, New York and London, pp 347–359

    Google Scholar 

  • Siddiqi O, Joshi S, Arora K, Rodrigues V (1989) Genetic investigation of salt reception in Drosophila melanogaster. Genome 31:646–651

    Google Scholar 

  • Stearns T, Botstein D (1988) Unlinked complementation: Isolation of new conditional mutants in each of the tubulin genes of Saccharomyces cerevisiae. Genetics 119:249–260

    Google Scholar 

  • Tanimura T, Shimada I (1981) Multiple receptor proteins for sweet taste in Drosophila discriminated by papain treatment. J Comp Physiol 141:265–269

    Google Scholar 

  • Tanimura T, Isono K, Takamura T, Shimada I (1982) Genetic dimorphism in taste sensitivity to trehalose in Drosophila melanogaster. J Comp Physiol 147:433–437

    Google Scholar 

  • Tompkins L (1979) Developmental analysis of two mutations affecting chemotactic behavior in Drosophila melanogaster. Dev Biol 73:174–177

    Google Scholar 

  • Tompkins L, Cardosa J, White F, Saunders TG (1979) Isolation and analysis of chemosensory behavior mutants in Drosophila melanogaster. Proc Natl Acad Sci USA 76:884–887

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by J.A. Campos-Ortega

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rodrigues, V., Sathe, S., Pinto, L. et al. Closely linked lesions in a region of the X chromosome affect central and peripheral steps in gustatory processing in Drosophila . Mol Gen Genet 226, 265–276 (1991). https://doi.org/10.1007/BF00273612

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00273612

Key words

Navigation