Skip to main content
Log in

Methionine biosynthesis in Saccharomyces cerevisiae

II. Gene-enzyme relationships in the sulfate assimilation pathway

  • Published:
Molecular and General Genetics MGG Aims and scope Submit manuscript

Summary

In Saccharomyces cerevisiae, the products of eleven different genes are needed for a functional sulfate assimilation pathway. Only five enzymatic steps are known in this pathway. The study of the gene-enzyme relationships has shown that the enzymes catalysing two of these steps are probably heteropolymeric. Moreover, mutations in three unlinked genes lead to multiple enzymatic losses. Different hypotheses are made to account for these results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Antoniewski, J.: Regulation de la voie de biosynthèse de la méthionine chez Saccharomyces cerevisiae: aspects physiologiques. Thèse de Doctorat-ingénieur. Université de Paris-Sud, 1972

  • Antoniewski, J., Robichon-Szulmajster, H. de: Biosynthesis of methionine and its control in wild type and regulatory mutants of Saccharomyces cerevisiae. Biochimie 55, 529–539 (1973)

    Google Scholar 

  • Breton, A., Surdin-Kerjan, Y.: Sulfate uptake in Saccharomyces cerevisiae: Biochemical and genetic study. Submitted to J. Bact. (1977)

  • Cherest, H., Eichler, F., Robichon-Szulmajster, H. de: Genetic and regulatory aspects of methionine biosynthesis in Saccharomyces cerevisiae. J. Bact. 97, 328–336 (1969)

    Google Scholar 

  • Cherest, H., Surdin-Kerjan, Y., Robichon-Szulmajster, H. de: Methionine mediated repression in Saccharomyces cerevisiae. A pleiotropic regulatory system involving methionyl transfer ribonucleic acid and the product of gene ETH2. J. Bact. 106, 758–772 (1971)

    Google Scholar 

  • Dreyfuss, J., Monty, K.J.: The biochemical characterization of cystein requiring mutants of Salmonella typhimurium. J. biol. Chem. 328, 1019–1024 (1963)

    Google Scholar 

  • Fink, G.R.: Gene clusters and the regulation of biosynthetic pathway in fungi. In: Metabolic pathways. V. Metabolic regulation (ed. H.J. Vogel), pp. 199–223. New York: Academic Press 1971

    Google Scholar 

  • Giles, N.H., Case, M.E., Dartridge, C.W.H., Ahmed, S.I.: A gene cluster in Neurospora crassa coding for an aggregate of five aromatic synthetic enzymes. Proc. nat. Acad. Sci. (Wash.) 58, 1453–1460 (1967)

    Google Scholar 

  • Grant, W.M.: Colorimetric determination of sulfur dioxyde. Anal. Chem. 9, 345–346 (1947)

    Google Scholar 

  • Jacob, F., Monod, J.: On the regulation of gene activity. Cold Spr. Harb. Symp. quant. Biol. 26, 193–211 (1961)

    Google Scholar 

  • Knobling, A., Schiffmann, D., Sickinger, H.D., Schweizer, E.: Malonyl and palmityl transferase less mutants of the yeast fatty acid synthetase complex. Europ. J. Biochem. 56, 359–367 (1975)

    Google Scholar 

  • Kredich, N.M., Tomkins, G.N.: The enzyme synthesis of L-cysteine in E. coli and S. typhimurium. J. biol. Chem. 241, 4955–4965 (1966)

    Google Scholar 

  • Masselot, M., Robichon-Szulmajster, H. de: Nonsense mutation in the regulatory gene ETH2 involved in methionine biosynthesis in Saccharomyces cerevisiae. Genetics 71, 535–550 (19 )

    Google Scholar 

  • Masselot, M., Robichon-Szulmajster, H. de: Methionine biosynthesis in Saccharomyces cerevisiae. I. Genetical analysis of auxotrophic mutants. Molec. gen. Genet. 139, 121–132 (1975)

    Google Scholar 

  • Mortimer, R.K., Hawthorne, D.C.: Genetic mapping in Saccharomyces cerevisiae. IV. Mapping of temperature sensitive genes and use of disomic strains in localizing genes. Genetics 74, 33–54 (1973)

    Google Scholar 

  • Moss, J.A. de: Biochemical diversity in the tryptophan pathway. Biochem. biophys. Res. Commun. 18, 850–857 (1965)

    Google Scholar 

  • Moss, J.A. de, Weigman, J.: An enzyme aggregate in the tryptophan pathway of Neurospora crassa. Proc. nat. Acad. Sci. (Wash.) 54, 241–247 (1965)

    Google Scholar 

  • Naiki, N.: Enzymatic defects in sulfate reducing system of sulfiteless yeast mutants. Plant and Cell Physiol. 5, 71–78 (1964)

    Google Scholar 

  • Naiki, N.: Some properties of sulfite reductase in yeast. Plant and Cell Physiol. 6, 179–194 (1965)

    Google Scholar 

  • Pasternak, C.A., Ellis, R.J., Jones-Mortimer, M.C., Crichton, C.E.: The control of sulphate reduction in bacteria. Biochem. J. 96, 270–275 (1965)

    Google Scholar 

  • Robbins, P.W.: Sulfate activating enzymes. In: Methods in enzymology (ed. S.P. Colowick and N.O- Kaplan), vol. V, pp. 964–977. New York: Academic Press 1962

    Google Scholar 

  • Robbins, P.W.: Preparation and properties of sulfuryl adenylates. In: Methods in enzymology (ed. S.P. Colowick and N.O. Kaplan), Vol. VI, pp. 766–775. New York: Academic Press 1963

    Google Scholar 

  • Robbins, P.W., Lipmann, F.: Enzymatic synthesis of adenosine-5′-phosphosulfate. J. biol. Chem. 233, 685–690 (1958)

    Google Scholar 

  • Siegel, L.M.: A direct microdetermination for sulfide. Anal. Biochem. 11, 126–132 (1965)

    Google Scholar 

  • Spence, K.D.: Mutation of Saccharomyces cerevisiae preventing uptake of S-adenosyl methionine. J. Bact. 106, 325–330 (1971)

    Google Scholar 

  • Vito, P.C. de, Dreyfuss, J.: Metabolic regulation of adenosine triphosphate sulfurylase in yeast. J. Bact. 88, 1341–1348 (1964)

    Google Scholar 

  • Wainwright, T.: Reduction of sulfite by yeast enzymes. Biochem. J. 83, 39P (1962)

  • Wiebers, J.L., Garner, H.R.: Acyl derivatives of homoserine as substrates for homocysteine synthesis in N. crassa, yeast and E. coli. J. biol. Chem. 242, 5644–5649 (1967)

    Google Scholar 

  • Wilson, L.G., Bandurski, R.S.: Enzymatic reactions involving sulfate, sulfite, selenate and molybdate. J. biol. Chem. 233, 975–981 (1958)

    Google Scholar 

  • Yamagata, S., Takeshima, K., Naiki, N.: Evidence for the identity of O-acetylserine sulfhydrylase with O-acetylhomoserine sulfhydrylase in Yeast. J. Biochem. 75, 1221–1229

  • Yamagata, S., Takeshima, K., Naiki, N.: O-acetylserine and O-acetylhomoserine sulfhydrylase of yeast; studies with methionine auxotrophs. J. Biochem. 77, 1029–1036 (1975)

    Google Scholar 

  • Yoshimoto, A., Sato, R.: Studies on yeast sulfite reductase. I. Purification and characterization. Biochim. biophys. Acta (Amst.) 153, 555–575 (1968a)

    Google Scholar 

  • Yoshimoto, A., Sato, R.: Studies on yeast sulfite reductase. II. Partial purification and properties of genetically incomplete sulfite reductase. Biochim. biophys. Acta (Amst.) 153, 576–588 (1968b)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by F. Kaudewitz

Rights and permissions

Reprints and permissions

About this article

Cite this article

Masselot, M., Surdin-Kerjan, Y. Methionine biosynthesis in Saccharomyces cerevisiae . Molec. Gen. Genet. 154, 23–30 (1977). https://doi.org/10.1007/BF00265572

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00265572

Keywords

Navigation