Skip to main content
Log in

Monolayers of ether lipids from archaebacteria

  • Published:
European Biophysics Journal Aims and scope Submit manuscript

Abstract

The surface behavior of six different ether lipids from archaebacteria, based on condensation of glycerol or more complex polyols with two isoprenoid alcohols at 20 or 40 carbon atoms, was investigated in monolayers at the air-water interface.

The compounds with no complex polar group (GD, GDGT, GDNT) form monolayers showing a reversible collapse at surface pressure as low as 22 dynes/cm. This collapse pressure decrease with temperature in such a way that the film tension remains constant. In condensed films, these molecules do not assume a completely upright position.

Lipids with complex polar ends (HL, GLB, PLII) form films more stable to compression. Forcearea characteristics and surface moment values of HL monolayers are similar to those of analogous ester lipids with fatty acid chains. Monolayers of the two bipolar lipids, GLB and PLII, at room temperature present a more condensed state, probably due to the lateral cohesion between long alkyl chains, but a lower collapse pressure.

For all bipolar lipids, the area expansion induced by temperature increase is larger than that of monopolar ones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

GD:

Glycerol diether (2,3-di-O-phytanyl-sn-glycerol

GDGT:

Glycerol-dialkyl-glycerol tetraether

GDNT:

Glycerol-dialkyl-nonitol tetraether

GLB:

Glycolipid B

PLII:

Phospholipid II

HL:

Total lipid extract from Halobacterium halobium

References

  • Adam NK, Jessop G (1926) The structure of thin films. Part IX. Dibasic substances. Proc R Soc Lond A 112:376–380

    Google Scholar 

  • Blocher D, Gutermann R, Henkel B, Ring K (1984) Differential scanning calorimetry studies on glycoplipids and glycophospholipids. Biochim Biophys Acta 778:74–80

    Google Scholar 

  • Davies JT (1948) Monolayers of some diesters. Trans Faraday Soc 44:909–913

    Google Scholar 

  • Davies JT, Rideal EK (1963) Interfacial phenomena. Academic Press, New York

    Google Scholar 

  • De Rosa M, Gambacorta A, Millonig G, Bu'Lock JD (1974) Convergent characters of extremely thermophilic acidophilic bacteria. Experientia 30:866–868

    Google Scholar 

  • De Rosa M, Gambacorta A, Bu'Lock JD (1975) Extremely thermophilic acidophilic bacteria convergent with Sulfolobus acidocaldarius. J Gen Microbiol 86:156–164

    Google Scholar 

  • De Rosa M, De Rosa S, Gambacorta A, Minale L, Bu'Lock JD (1977) Chemical structure of the ether lipids of thermophilic acidophilic bacteria of the Caldariella group. Phytochemistry 16:1961–1965

    Google Scholar 

  • De Rosa M, Gambacorta A, Nicolaus B, Bu'Lock JD (1980a) Complex lipids of Caldariella acidophila, a thermoacidophilic bacterium. Phytochemistry 19:821–825

    Google Scholar 

  • De Rosa M, Esposito E, Gambacorta A, Nicolaus B, Bu'Lock JD (1980b) Effects of temperature of ether lipid composition of Caldariella acidophila. Phytochemistry 19:827–831

    Google Scholar 

  • De Rosa M, Gambacorta A, Nicolaus B, Chappe B, Albrecht P, (1983) Isoprenoid ethers: Backbone of complex lipids of the archebacterium Sulfolobus solfataricus. Biochim Biophys Acta 753:249–256

    Google Scholar 

  • Fromherz P (1975) Instrumentation for handling monomolecular films at air-water interface. Rev Sci Instrum 46: 1380–1385

    Google Scholar 

  • Gaines GL (1966) Insoluble monolayers at liquid-gas interfaces. Interscience Publishers, New York

    Google Scholar 

  • Gliozzi A, Rolandi R, De Rosa M, Gambacorta A (1982) Artificial black membranes from bipolar lipids of thermophilic archaebacteria. Biophys J 37:563–566

    Google Scholar 

  • Gliozzi a, Rolandi R, De Rosa M, Gambacorta A (1983a) Monolayer black membranes from bipolar lipids of archaebacteria and their temperature induced structural changes. J Membr Biol 75:45–56

    Google Scholar 

  • Gliozzi A, Paoli G, De Rosa M, Gambacorta A (1983b) Modulation of transition temperature of lipids in thermophilic archaebacteria. Effect of isoprenoid cyclization. Biochim Biophys Acta 735:234–242

    Google Scholar 

  • Gulik A, Luzati V, De Rosa M, Gambacorta A (1985) Structure and polymorphism of bipolar isopranil lipids from archaebacteria. J Mol Biol 182:131–149

    Google Scholar 

  • Gupta R, Woese CR (1980) Unusual modification patterns in the transfer ribonucleic acid of archaebacteria. Current Microbiol 4:245–249

    Google Scholar 

  • Kandler O, Konig H (1978) Chemical composition of the peptidoglycan-free cell walls of methanogenic, bacteria. Arch Microbiol 118:141–152

    Google Scholar 

  • Kates M, Kushwaha SC (1978) Biomhemistry of the lipids of extremely Halophilic bacteria. In: Caplan SR, Ginzburg, M (eds) Energetics and structure of halophilic microorganism. Elsevier, North Holland Biomedical Press, Amsterdam, pp 461–479

    Google Scholar 

  • Langworthy TA (1978) Membranes and lipids of extremely thermoacidophilic microorganism. In: Friedman SM (ed) Biochemistry of thermophily. Academic Press, New York, pp 11–30

    Google Scholar 

  • Langworthy TA, Tornabene TG, Holzer G (1982) Lipids of archaebacteria. Zbl Bakt Hyg I. Abt Orig C 2:228–244

    Google Scholar 

  • Lelkes PI, Goldenberg D, Gliozzi A, De Rosa M, Gambacorta A, Miller IR (1983) Vesicles from mixtures of bipolar archaebacterial lipids with egg phosphatidylcholine. Biochim Biophys Acta 732:714–718

    Google Scholar 

  • Luehrsen KR, Nicholson DE, Eubanks DC, Fox GE (1981) An archaebacterial 5SrRNA contains a long insertion sequence. Nature (London). 293:755–756

    Google Scholar 

  • Maggio B, Cumar FA, Caputto R (1978) surface behaviour of gangliosides and related glycosphigolipids. Biochem J 171: 559–565

    Google Scholar 

  • Shah DO (1972) Monolayers of lipids in relation to membranes. Prog in Surf Sci 3:221–278

    Google Scholar 

  • Tornabene TG, Langworthy TA (1979) Diphytanyl and diphytanyl glycerol ether lipids of methanogenic archaebacteria. Science 203:51–53

    Google Scholar 

  • Tu J, Prongishvilli D, Huber H, Wildgruber G, Zillig W, Stetter KO (1982) Taxonomic relation between archaebacteria including 6 novel genera examined by cross hybridizations of DNAs and 16s tRNAs. J Mol Evol 18:109–114

    Google Scholar 

  • Van Deenen LLM, Houstmuller UMT, De Haas GH, Mulder E (1962) Monomolecular layers of synthetic phosphatides. J Pharmacol 14:429–444

    Google Scholar 

  • Woese CR (1981) Archaebacteria. Sci Am 244:94–107

    Google Scholar 

  • Woese CR, Fox GE (1977) Phylogenetic structure of the Prokaryotic Domain: The Primary Kingdoms. Proc Natl Acad Sci USA 74:5088–5090

    Google Scholar 

  • Woese CR, Magrum LJ, Fox GE (1978) Archaebacteria. J Mol Evol 11:245–252

    Google Scholar 

  • Zillig W, Schnabel R, Tu J, Stetter KO (1982) The phylogeny of archaebacteria, including novel anaerobic thermoacidophiles in the light of RNA polymerase structure. Naturwissenschaften 69:197–207

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rolandi, R., Schindler, H., De Rosa, M. et al. Monolayers of ether lipids from archaebacteria. Eur Biophys J 14, 19–27 (1986). https://doi.org/10.1007/BF00260399

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00260399

Key words

Navigation