Skip to main content
Log in

On the dielectrically observable consequences of the diffusional motions of lipids and proteins in membranes

1. Theory and overview

  • Published:
European Biophysics Journal Aims and scope Submit manuscript

Abstract

  1. 1.

    A system consisting of an array of cylindrical, polytopic membrane proteins (or protein complexes) possessed of a permanent dipole moment and immersed in a closed, spherical phospholipid bilayer sheet is considered. It is assumed that rotation of the protein (complex) in a plane normal to the membrane, if occurring, is restricted by viscous drag alone. Lateral diffusion is assumed either to be free and random or to be partially constrained by barriers of an unspecified nature.

  2. 2.

    The dielectric relaxation times calculated for membrane protein rotation in a suspension of vesicles of the above type are much longer than those observed with globular proteins in aqueous solution, and fall in the mid-to-high audio-frequency range.

  3. 3.

    If the long range lateral diffusion of (charged) membrane protein complexes is essentially unrestricted, as in the “fluid mosaic” membrane model, dielectric relaxation times for lateral motions will lie, except in the case of the very smallest vesicles, in the sub-audio (ELF) range.

  4. 4.

    If, in contrast, the lateral diffusion of membrane protein complexes is partially restricted by “barriers” or “long-range” interactions (of unspecified nature), significant dielectric dispersions may be expected in both audio- and radio-frequency ranges, the critical (characteristic) frequencies depending upon the average distance moved before a barrier is encountered.

  5. 5.

    Similar analyses are given for rotational and translational motions of phospholipids.

  6. 6.

    At very low frequencies, a dispersion due to vesicle orientation might in principle also be observed; the dielectrically observable extent of this rotation will depend, inter alia, upon the charge mobility and disposition of the membrane protein complexes, as well as, of course, on the viscosity of the aqueous phase.

  7. 7.

    The role of electroosmotic interactions between double layer ions (and water dipoles) and proteins raised above the membrane surface is considered. In some cases, it seems likely that such interactions serve to raise the dielectric increment, relative to that which might otherwise have been expected, of dispersions due to protein motions in membranes. Depending upon the tortuosity of the ion-relaxation pathways, such a relaxation mechanism might lead to almost any characteristic frequency, and, even in the absence of protein/lipid motions, would cause dielectric spectra to be much broader than one might expect from a simple, macroscopic treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adey WR (1981) Tissue interactions with nonionising electromagnetic fields. Physiol Rev 61:435–514

    Google Scholar 

  • Agutter PS, Suckling KE (1984) Models of the interactions between membranes and intracellular protein structures. Biochem Soc Trans 12:713–718

    Google Scholar 

  • Almers W, Stirling C (1984) Distribution of transport proteins over animal cell membranes. J Membr Biol 77:169–186

    Google Scholar 

  • Arnold WM, Zimmermann U (1983) The interpretation and usage of the rotation of biological cells. In: Fröhlich H, Kremer F (eds) Coherent excitations in biological systems. Springer, Berlin Heidelberg New York, pp 211–221

    Google Scholar 

  • Asami K, Irimajiri A (1984) Dielectric dispersions of a single bilayer membrane in suspension. Biochim Biophys Acta 769:370–376

    Google Scholar 

  • Asami K, Hanai T, Koizumi N (1976) Dielectric properties of yeast cells. J Membr Biol 28:169–180

    Google Scholar 

  • Asami K, Hanai T, Koizumi N (1980a) Dielectric properties of Escherichia coli in the light of the theory of interfacial polarization. Biophys J 31:215–228

    Google Scholar 

  • Asami K, Hanai T, Koizumi N (1980b) Dielectric approach to suspensions of ellipsoidal particles covered with a shell in particular reference to biological cells. Jpn J Appl Phys 19:359–365

    Google Scholar 

  • Azzi A (1975) The application of fluorescent probes in membrane studies. Q Rev Biophys 8:237–316

    Google Scholar 

  • Benga G, Holmes RP (1984) Interactions between components in biological membranes and their implications for membrane function. Prog Biophys Mol Biol 43:195–257

    Google Scholar 

  • Boyd RH (1980) Dielectric constant and loss. In: Fava RA (ed) Methods of experimental physics, vol 16 C. Academic Press, New York, pp 379–421

    Google Scholar 

  • Cadenas E, Garland PB (1979) Synthesis of cytoplasmic membrane during growth and division of Escherichia coli. Dispersive behaviour of nitrate reductase. Biochem J 184:45–50

    Google Scholar 

  • Carstensen EL, Marquis RE (1975) Dielectric and electrochemical properties of bacterial cells. Gerhardt P, Costilow RN, Sadoff HL (eds) Spores VI. American Society for Microbiology, Washington, pp 563–571

    Google Scholar 

  • Chapman D, Gomez-Fernandez GC, Goni FM (1979) Intrinsic protein-lipid interactions. Physical and biochemical evidence. FEBS Lett 98:211–223

    Google Scholar 

  • Cherry RJ (1979) Rotational and lateral diffusion of membrane proteins. Biochim Biophys Acta 559:289–327

    Google Scholar 

  • Cherry RJ, Godfrey RE (1981) Anisotropic rotations of bacteriorhodopsin in lipid membranes. Comparison of theory with experiment. Biophys J 36:257–276

    Google Scholar 

  • Clegg JS (1984) Properties and metabolism of the aqueous cytoplasm and its boundaries. Am J Physiol 246:R133-R151

    Google Scholar 

  • Clegg JS, Szwarnowski S, McClean VER, Sheppard RJ, Grant EH (1982) Interrelationships between water and cell metabolism in Artemia Cysts. X. Microwave dielectric studies. Biochim Biophys Acta 721:458–468

    Google Scholar 

  • Cole KS (1970) Dielectric properties of living membranes. In: Snell F, Wolken J, Iverson G, Lam J (eds) Physical principles of biological membranes. Gordon & Breach, New York, pp 1–15

    Google Scholar 

  • Cole KA (1972) Membranes, ions and impulses. University of California Press Berkeley

    Google Scholar 

  • Cole KS, Cole RH (1941) Dispersion and absorption in dielectrics. 1. Alternating current characteristics. J Chem Phys 9:341–351

    CAS  PubMed  Google Scholar 

  • Daniel VV (1967) Dielectric relaxation. Academic Press, London

    Google Scholar 

  • Davis JH (1983) The description of membrane lipid conformation, order and dynamics by H-NMR. Biochim Biophys Acta 737:117–171

    Google Scholar 

  • Debye P (1929) Polar molecules, Dover, New York

    Google Scholar 

  • Dixit BPSN, Vanderkooi JM (1984) Probing structure and motion of the mitochondrial cytochromes. Curr Top Bioenerg 13:159–202

    Google Scholar 

  • Dukhin SS, Shilov VN (1974) Dielectric phenomena and the double layer in disperse systems and polyelectrolytes. Wiley, Chichester

    Google Scholar 

  • Eden J, Gascoyne PRC, Pethig R (1980) Dielectric and Electrical Properties of hydrated bovine serum albumin. JCS Faraday I 76:426–434

    Google Scholar 

  • Edidin M (1974) Rotational and translational diffusion in membranes. Annu Rev Biophys Bioeng 3:179–201

    Google Scholar 

  • Einolf CW, Carstensen EL (1971) Low-frequency dielectric dispersion in suspensions of ion-exchange resins. J Phys Chem 75:1091–1099

    Google Scholar 

  • Einolf CW, Carstensen EL (1973) Passive electrical properties of microorganisms. V. Low frequency dielectric dispersion of bacteria. Biophys J 13:8–13

    Google Scholar 

  • Epstein BR, Foster KR (1983) Anisotropy in the dielectric properties of skeletal muscle. Med Biol Eng Comput 21:51–55

    Google Scholar 

  • Evans EA, Hochmuth BM (1978) Mechanochemical properties of membranes Curr Top Membr Trans 10:1–64

    Google Scholar 

  • Falk G, Fatt P (1968) Passive electrical properties of rod outer segments. J Physiol 198:627–646

    Google Scholar 

  • Fettiplace R, Gordon LGM, Hladky SB, Requena J, Zingsheim HP, Haydon DA (1975) Techniques in the formation and examination of “black” lipid membranes. In: Korn ED (ed) Methods in membrane biology, Vol 4. Plenum Press, New York, pp 1–75

    Google Scholar 

  • Foster KR, Schepps JL (1981) Dielectric properties of tumor and normal tissues at radio through microwave frequencies. J Microwave Power 16:107–119

    Google Scholar 

  • Foster KR, Schepps JL, Epstein BR (1982) Microwave dielectric studies on proteins, tissues and heterogenous suspension. Bioelectromagnets 3:29–43

    Google Scholar 

  • Fricke H (1925) The electrical capacity of suspensions of red corpuscles of a dog. Phys Rev 28:682–687

    Google Scholar 

  • Fröhlich H (1958) Theory of dielectrics. Dielectric constants and dielectric loss. 2nd ed. Clarendon Press, Oxford

    Google Scholar 

  • Froud RJ, Ragan CI (1984) Cytochrome c mediates electron transfer between ubiquinol-cytochrome c reductase and cytochrome c oxidase by free diffusion along the surface of the membrane. Biochem J 217:561–571

    Google Scholar 

  • Fuhrhop J-H, Mathieu J (1984) Routes to functional vesicle membrane without proteins. Angew Chem (Int ed) 23:100–113

    Google Scholar 

  • Gabler R (1978) Electrical interactions in molecular biophysics. Academic Press, London, pp 116–117

    Google Scholar 

  • Gabriel C, Sheppard RJ, Grant EH (1983) Dielectric properties of ocular tissue at 37°C. Phys Med Biol 28:43–49

    Google Scholar 

  • Gascoyne PRC, Pethig R, Szent-Gyorgyi A (1981) Water structure-dependent charge transport in proteins. Proc Natl Acad Sci USA 78:261–265

    Google Scholar 

  • Gerber BR, Routledge LM, Takashima S (1972) Self-assembly of bacterial flagellar protein: Dielectric behaviour of monomers and polymers. J Mol Biol 71:317–337

    Google Scholar 

  • Gräber P (1981) Phosphorylation in chloroplasts. Curr Top Membr Trans 16:215–245

    Google Scholar 

  • Grant EH, South GP (1972) Dielectric relaxation of proteins in aqueous solutions. Adv Mol Relax Proc 3:335–367

    Google Scholar 

  • Grant EH, Sheppard RJ, South GP (1978) Dielectric behaviour of biological molecules in solution. Oxford University Press, London

    Google Scholar 

  • Hackenbrock CR (1981) Lateral diffusion and electron transfer in the mitochondrial inner membrane. Trends Biochem Sci 6:151–154

    Google Scholar 

  • Hamamoto T, Ohno K, Kagawa Y (1982) Net adenosine triphosphate synthesis driven by an external electric field in rat liver mitochondria. J Biochem 91:1759–1766

    Google Scholar 

  • Hanai T, Haydon DA, Taylor J (1964) An investigation by electrical methods of lecithin-in-hydrocarbon films in aqueous solutions. Proc R Soc Ser A 281:377–391

    Google Scholar 

  • Hanai T, Haydon DA, Taylor J (1965) Polar group orientation and the electrical properties of lecithin bimolecular leaflets. J Theor Biol 9:278–296

    Google Scholar 

  • Hanai T, Koizumi N, Irmajiri A (1975) A method for determining the dielectric constant and the conductivity of membrane-bounded particles of biological relevance. Biophys Struct Mech 1:285–194

    Google Scholar 

  • Harris CM, Kell DB (1983) The radio-frequency dielectric properties of yeast cells measured with a rapid, frequency-domain dielectric spectrometer. Bioelectrochem Bioenerg 11:15–28

    Google Scholar 

  • Harris CM, Kell DB (1985) On the dielectrically observable consequences of the diffusional motions of lipids and proteins in membranes. 2. Experiments with microbial cells, protoplasts and membrane vesicles. Eur Biophys J 13: (in press)

  • Harris CM, Hitchens GD, Kell DB (1984) Dielectric spectroscopy of microbial membrane systems. In: Allen MJ, Usherwood PNR (eds) Charge and field effects in biosystems. Abacus Press, Tunbridge Wells, pp 179–185

    Google Scholar 

  • Hasted JB (1973) Aqueous dielectrics. Chapman & Hall, London

    Google Scholar 

  • Hasted JB, Husain SK, Ko AY, Rosen D, Nicol E, Birch JR (1983) Excitations of proteins by electric fields. In: Fröhlich H, Kremer F (eds) Coherent excitations in biological systems. Springer, Berlin Heidelber New York, pp 71–83

    Google Scholar 

  • Hauser H, Phillips MC (1979) Interactions of the polar groups of phospholipid bilayer membranes. Prog Surf Membr Sci 13:297–413

    Google Scholar 

  • Haydon DA, Hendry BM, Levinson SR, Requena J (1977) Anaesthesia by the n-alkanes. A comparative study of nerve impulse blockage and the properties of black lipid bilayer membranes. Biochim Biophys Acta 470:17–34

    Google Scholar 

  • Hedvig P (1977) Dielectric spectroscopy of polymers. Adam Hilger Bristol

    Google Scholar 

  • Henze R (1980) Dielectric relaxation in lecithin/cholesterol/water-mixtures. Chem Phys Lipids 27:165–175

    Google Scholar 

  • Hoffman W, Restall CJ (1983) Rotation and lateral diffusion of membrane proteins as determined by laser techniques. In: Chapman D (ed) Biomembrane structure and function. Macmillan, London, pp 257–318

    Google Scholar 

  • Hughes BD, Pailthorpe BA, White LR, Sawyer WH (1982) Extraction of membrane microviscosity from translational and rotational diffusion coefficients. Biophys J 37:673–676

    Google Scholar 

  • Hupfer B, Ringsdorf H, Schupp H (1983) Lipsomes from polymerizable phospholipids. Chem Phys Lipids 33:355–374

    Google Scholar 

  • Ikegami A, Kinosita K, Kouyama T, Kawato S (1982) Structure and dynamics of biological membranes studied by nanosecond fluorescence spectroscopy. In: Sato R, Ohnishi S (eds) Structure, dynamics and biogenesis of biomembranes. Plenum Press, New York, pp 1–32

    Google Scholar 

  • Illinger KH (1981) Electromagnetic-field interaction with biological systems in the microwave and far-infrared region. Physica basis. ACS Symp Ser 157:1–46

    Google Scholar 

  • Israelachvili JN, Marcelja S, Horn RG (1980) Physical principles of membrane organisation. Q Rev Biophys 13:121–200

    Google Scholar 

  • Jaffe LF (1977) Electrophoresis along cell membranes. Nature 265:600–602

    Google Scholar 

  • Jaffe LF, Nuccitelli R (1977) Electrical controls of developments. Annu Rev Biophys Bioeng 6:445–476

    Google Scholar 

  • Jain MK (1983) Nonrandom lateral organisation in bilayers and biomembranes. In: Aloia, RC (ed) Membrane fluidity in biology vol 1. Academic Press, New York, pp 1–37

    Google Scholar 

  • Johnston DS, McLean LR, Whittam MA, Clark AD, Chapman D (1983) Spectra and physical properties of liposomes and monolayers of polymerizable phospholipids containing diacetylene groups in one or both acyl chains. Biochemistry 22:3194–3202

    Google Scholar 

  • Jonscher AK (1975) Physical basis of dielectric loss. Nature 253:717–719

    Google Scholar 

  • Juliano RL, Hsu MJ, Regen SL, Singh M (1984) Photopolymerised phospholipid vesicles. Stability and retention of hydrophilic and hydrophobic marker substances. Biochim Biophys Acta 770:109–114

    Google Scholar 

  • Kaatze U, Henze R, Eibl H (1979a) Motion of the lengthened zwitterionic head groups of c-lecithin analogues in aqueous solutions as studied by dielectric relaxation measurements. Biophys Chem 10:351–362

    Google Scholar 

  • Kaatze U, Henze R, Pottel R (1979b) Dielectric relaxation and molecular motions in C-lecithin-water systems. Chem Phys Lipids 25:149–177

    Google Scholar 

  • Kaarze U, Henze R, Seegers A, Pottel R (1975) Dielectric relaxation in colloidal phospholipid aqueous solutions. Ber Bunsenges Phys Chem 79:42–53

    Google Scholar 

  • Kang SY, Gutowsky HS, Hsung JC, Jacobs R, King TE, Rice D, Oldfield E (1979) Nuclear magnetic resonance investigation of the cytochrome oxidase-phospholipid interaction: A new model for boundary lipid. Biochemistry 18:3257–3267

    Google Scholar 

  • Kawato S, Kinosita K, Ikegami A (1977) Dynamic structure of lipid bilayers studied by nanosecond fluorescence techniques. Biochemistry 16:2319–2324

    Google Scholar 

  • Kawato S, Lehner C, Muller M, Cherry RJ (1982) Protein-protein interactions of cytochrome oxidase in inner mitochondrial membranes. The effect of liposome fusion on protein rotational mobility. J Biol Chem 257:6470–6476

    Google Scholar 

  • Kawato S, Sigel E, Carafoli E, Cherry RJ (1981) Rotation of cytochrome oxidase in phospholipid vesicles. Investigations of interactions between cytochrome oxidases and between cytochrome oxidase and cytochrome bc complex. J Biol Chem 256:7518–7527

    Google Scholar 

  • Kell DB (1983) Dielectric properties of bacterial chromatophores. Bioelectrochem Bioenerg 11:405–415

    Google Scholar 

  • Kell DB (1984a) Diffusion of protein complexes in prokaryotic membranes: Fast, free, random or directed? Trends Biochem Sci 9:86–88

    Google Scholar 

  • Kell DB (1984b) Dielectric spectroscopy of the rotational and translational motions of membrane proteins: Theory and experiment. EBEC Rep 3:645–646

    Google Scholar 

  • Kell DB, Harris CM (1985) Dielectric spectroscopy and membrane organization. J Bioelectr (in press)

  • Kell DB, Hitchens GD (1983) Coherent properties of the membraneous systems of electron transport phosphorylation. In: Fröhlich H, Kremer F (eds) Coherent excitations in biological systems. Springer, Berlin Heidelberg New York, pp 178–198

    Google Scholar 

  • Kell DB, Westerhoff HV (1985) Catalytic facilitation and membrane bioenergetics. In: Welch GR (ed) Organised multienzyme systems: Catalytic properties. Academic press, New York, pp 63–139

    Google Scholar 

  • Kinosita K, Kawato S, Ikegami A (1977) A theory of fluorescence polarization decay in membranes. Biophys J 20:289–305

    Google Scholar 

  • Kirkwood JG, Shumaker JB (1952) The influence of dipole moment fluctuations on the dielectric increment of proteins in solution. Proc Natl Acad Sci USA 38:855–862

    Google Scholar 

  • Laurent TC, Obrink B (1972) On the restriction of rotational diffusion of proteins in polymer networks. Eur J Biochem 28:94–101

    Google Scholar 

  • Lewis TJ (1977) The dielectric behaviour of noncrystalline solids. Dielectr Rel Mol Proc 3:186–218

    Google Scholar 

  • McCloskey M, Poo M-m (1984) Protein diffusion in cell membranes: Some biological implications. Int Rev Cytol 87:19–81

    Google Scholar 

  • McCrum Ng, Read BE, Williams G (1967) Anelastic and dielectric effects in polymeric solids. Wiley, New York

    Google Scholar 

  • McLaughlin S, Poo M-m (1981) The role of electro-osmosis in the electric-field-induced movement of charged macromolecules on the surfaces of cell. Biophys J 34:85–93

    Google Scholar 

  • Marsh D (1983) Spin-label answers to lipid-protein interactions. Trends Biochem Sci 8:330–333

    Google Scholar 

  • Muller M, Krebs JJR, Cherry RJ, Kawato S (1984) Rotational diffusion in the ADP/ATP translocator in the inner membrane of mitochondria and in proteoliposomes. J biol Chem 259:3037–3043

    Google Scholar 

  • Oncley JL (1943) The electric moments and relaxation times of proteins as measured from their influence on the dielectric constants of solutions. In: Cohn EJ, Edsall JT (eds) Proteins, amino acids and peptides. Reinhold, New York, pp 543–568

    Google Scholar 

  • Pauly H (1963) Über die elektrische Kapazität der Zellmembran und die Leitfähigkeit des Zytoplasmas von Ehrlich-Aszitestumorzellen. Biophysik 1:143–153

    Google Scholar 

  • Pauly H, Schwan HP (1959) Über die Impedanz einer Suspension von kugelförmigen Teilchen mit einer Schale. Ein Modell für das dielektrische Verhalten von Zellsuspensionen und von Protein Lösungen. Z Naturforsch 14B: 125–131

    Google Scholar 

  • Pauly H, Packer L, Schwan HP (1960) Electrical properties of mitochondrial membranes. J Biophys biochem Cytol 7:589–601

    Google Scholar 

  • Peters R (1981) Translational diffusion in the plasma membranes of single cells as studied by fluorescence microphotolysis. Cell Biol Int Rep 5:733–760

    Google Scholar 

  • Petersen DC, Cone RA (1975) The electric dipole moment of rhodopsin solubilized in triton X-100 Biophys J 15:1181–1200

    Google Scholar 

  • Pethig R (1979) Dielectric and electronic properties of biological materials. Wiley, Chichester

    Google Scholar 

  • Pethig R (1984) Dielectric properties of biological materials: Biophysical and medical applications. IEEE Trans Electrical Insulation EI-19:453–474

    Google Scholar 

  • Pilla AA (1980) Electrochemical information transfer at cell surfaces and junctions-application to the study and manipulation of cell regulation. In: Keyzer H, Gutmann F (eds) Bioelectrochemistry. Plenum Press, New York, pp 353–396

    Google Scholar 

  • Pilwat G, Richter HP, Zimmermann U (1981) Giant culture cells by electric field-induced fusion. FEBS Lett 133:169–174

    Google Scholar 

  • Poo M-m (1981) In situ electrophoresis of membrane components. Annu Rev Biophys Bioeng 10:245–276

    Google Scholar 

  • Poo M-m, Robinson KR (1979) Electrophoresis of conconavalin A receptors along embryonic muscle cell membranes. Nature 265:602–605

    Google Scholar 

  • Poo M-m, Lam JW, Orida N, Chao AW (1979) Electrophoresis and diffusion in the plane of the cell membrane. Biophys J 26:1–22

    Google Scholar 

  • Pottel R, Gopel K-D, Henze R, Kaatze U, Uhlendorf V (1984) The dielectric permittivity spectrum of aqueous colloidal phospholipid solutions between 1 kHz and 60 GHz. Biophys Chem 19:233–244

    Google Scholar 

  • Rabinowitz JR (1982) The effect of electric field induced perturbation of the distribution of ions near the cell surface on migration of charged membrane components. J Theor Biol 99:377–389

    Google Scholar 

  • Redwood W, Takashima S, Schwan HP, Thompson TL (1972) Dielectric studies on homogeneous phosphatidylcholine vesicles. Biochim Biophys Acta 255:557–566

    Google Scholar 

  • Saffman PG (1976) Brownian motion in thin sheets of viscous fluid. J Fluid Mech 73:593–602

    Google Scholar 

  • Saffman PG, Delbrück M (1975) Brownian motion in biological membranes. Proc Natl Acad Sci USA 72:3111–3113

    Google Scholar 

  • Salter DC (1981) Alternating current electrical properties of human skin measured in vivo. In: Marks R, Payne PA (eds) Bioengineering and the skin. MTP Press, Lancaster, pp 267–274

    Google Scholar 

  • Saraste M (1983) How complex is a respiratory complex? Trends Biochem Sci 8:139–142

    Google Scholar 

  • Schanne OF, Ceretti ERP (1978) Impedance measurements in biological cells. Wiley, Chichester

    Google Scholar 

  • Scheider W (1965) Dielectric relaxation of molecules with fluctuating dipole moments. Biophys J 5:617–628

    Google Scholar 

  • Schlodder E, Gräber P, Witt HT (1982) Mechanism of phosphorylation in chloroplasts. In: Barber J (ed) Electron transport and phosphorylation. Elsevier Biomedical Press, Amsterdam, pp 105–175

    Google Scholar 

  • Schwan HP (1957) Electrical properties of tissue and cell suspensions. In: Lawrence JH, Tobias CA (eds) Advances in biological and medical physics, vol 5. Academic Press, New York, pp 147–209

    Google Scholar 

  • Schwan HP (1963) Determination of biological impedances. In: Nastuk WL (ed) Physical techniques in biological research, vol VI B. Academic Press, New York, pp 323–407

    Google Scholar 

  • Schwan HP (1977) Field interaction with biological matter. Ann NY Acad Sci 303:198–213

    Google Scholar 

  • Schwan HP (1981a) Dielectric properties of biological tissue and biophysical mechanisms of electromagnetic field interactions. ACS Symp Ser 157:109–131

    Google Scholar 

  • Schwan HP (1981b) Electrical properties of cells: Principles, some recent results, and some unresolved problems. In: Adelmann WJ, Goldman DE (eds) The biophysical approach to excitable systems. Plenum Press, New York, pp 3–24

    Google Scholar 

  • Schwan HP (1983a) Dielectric properties of biological tissue and cells at RF- and MW-frequencies. In: Grandolfo M, Michaelson SM, Rindi A (eds) Biological effects and dosimetry of non-ionizing radiation. Plenum Press, New York, pp 195–211

    Google Scholar 

  • Schwan HP (1983b) Dielectric properties of biological tissues and cells at ELF-frequencies. In: Grandolfo M, Michaelson SM, Rindi A (eds) Biological effects and dosimetry of nonionizing radiation. Plenum Press, New York, pp 549–559

    Google Scholar 

  • Schwan HP, Carstensen EL (1957) Dielectric properties of the membrane of lysed erythrocytes. Science 125:985–986

    Google Scholar 

  • Schwan HP, Foster KR (1980) RF-field interactions with biological systems: Electrical properties and biophysical mechanisms. Proc IEEE 68:104–113

    Google Scholar 

  • Schwan HP, Takashima S, Miyamoto VK, Stoeckenius W (1970) Electrical properties of phospholipid vesicles. Biophys J 10:1102–1119

    Google Scholar 

  • Schwarz G (1962) A theory of the low-frequency dielectric dispersion of colloidal particles in electrolyte solution. J Phys Chem 66:2636–2642

    Google Scholar 

  • Shepherd JCW, Buldt G (1978) Zwitterionic dipoles as a dielectric probe for investigating head group mobility in phospholipid membranes. Biochim Biophys Acta 514:83–94

    Google Scholar 

  • Shepherd JCW, Buldt G (1979) The influence of cholesterol on head group mobility in phospholipid membranes. Biochim Biophys Acta 558:41–47

    Google Scholar 

  • Shinitzky M, Barenholz Y (1978) Fluidity parameters of lipid regions determined by fluorescence polarization. Biochim Biophys Acta 515:367–394

    Google Scholar 

  • Singer SJ, Nicolson GL (1972) The fluid mosaic model of the structure of cell membranes. Science 175:720–731

    Google Scholar 

  • South GP, Grant EH (1972) Electric dispersion and dipole moment of myoglobin in water. Proc R Soc Ser A 328:371–387

    Google Scholar 

  • Sowers AE, Hackenbrock CR (1981) Rate of lateral diffusion of intramembrane particles: Measurement by electrophoretic displacement and rerandomization. Proc Natl Acad Sci USA 78:6246–6250

    Google Scholar 

  • Stoy RD, Foster KR, Schwan HP (1982) Dielectric properties of mammalian tissue from 0.1 to 100 MHz: a summary of recent data. Phys Med Biol 27:501–513

    Google Scholar 

  • Takashima A (1962) Dielectric dispersions of protein solutions in viscous solvent. J Polymer Sci 56:257–263

    Google Scholar 

  • Takashima S (1969) Dielectric properties of proteins. I. Dielectric relaxation. In: Leach AJ (ed) Physical principles and techniques of protein chemistry, part A. Academic Press, New York, pp 291–333

    Google Scholar 

  • Takashima S, Minakata A (1975) Dielectric behaviour of biological macromolecules. Digest of dielectric literature vol 37. National Research Council. Washington DC, pp 602–653

    Google Scholar 

  • Tien HT (1974) Bilayer lipid membranes (BLM). Theory and practice. Marcel Dekker, New York

    Google Scholar 

  • Uhlendorf V (1984) Fatty acid contamination and dielectric relaxation in phospholipid vesicle suspensions. Biophys Chem 20:261–273

    Google Scholar 

  • Vanderkooi G, Bendler JT (1977) Dynamics and thermodynamics of lipid-protein interactions in membranes. In: Abrahamson S, Pascher I (eds) The structure of biological membranes. Plenum Press, New York, pp 551–570

    Google Scholar 

  • Vaz WLC, Derzko ZI, Jacobson KA (1982) Photobleaching measurements of the lateral diffusion of lipids and proteins in artificial phospholipid bilayer membranes. In: Poste G, Nicolson GL (eds) Membrane reconstitution. Elsevier, Amsterdam, pp 83–135

    Google Scholar 

  • Vaz, WLC, Goodsaid-Zalduondo F, Jacobson KA (1984) Lateral diffusion of lipids and proteins in bilayer membranes. FEBS Lett 174:199–207

    Google Scholar 

  • Wada A (1976) The α-helix as an electric macrodipole. Adv Biophys 9:1–63

    Google Scholar 

  • Weaver DL (1982) Note on the interpretation of lateral diffusion coefficients. Biophys J 38:311–313

    Google Scholar 

  • Webb WW, Barak LS, Tank DW, Wu E-s (1981) Molecular mobility on the cell surface. Biochem Soc Symp 46:191–205

    Google Scholar 

  • Welch GR, Somogyi B, Damjanovich S (1982) The role of protein fluctuations in enzyme action: a review. Prog Biophys Mol Biol 39:109–146

    Google Scholar 

  • Witt HT, Schlodder E, Graber P (1976) Membrane-bound ATP synthesis generated by an external electric field. FEBS Lett 69:272–276

    Google Scholar 

  • Zimmermann U (1982) Electric field-mediated fusion and related electrical phenomena. Biochim Biophys Acta 694:227–277

    Google Scholar 

  • Zimmermann U, Vienken J (1982) Electric field-induced cell-to-cell fusion. J Membr Biol 67:165–182

    Google Scholar 

  • Zimmermann U, Vienken J (1984) Electric field-mediated cell-to-cell fusion. In: Beers RF, Bassett EG (eds) Cell fusion: Gene transfer and transformation. Raven Press, New York, pp 171–187

    Google Scholar 

  • Zimmermann U, Buchner K-H, Arnold WM (1984) Electro-fusion of cells: Recent developments and relevance for evolution. In: Allen MJ, Usherwood PNR (eds) Charge and field effects in biosystems. Abacus Press, Tunbridge Wells, pp 293–318

    Google Scholar 

  • Zimmermann U, Scheurich P, Pilwat G, Benz R (1981) Cells with manipulated functions: New perspectives for cell biology, medicine and technology. Angew Chem (Int ed) 20:325–344

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kell, D.B., Harris, C.M. On the dielectrically observable consequences of the diffusional motions of lipids and proteins in membranes. Eur Biophys J 12, 181–197 (1985). https://doi.org/10.1007/BF00253845

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00253845

Key words

Navigation