Skip to main content
Log in

The dependence of the cytoplasmic pH in aerobic and anaerobic cells of the green algae Chlorella fusca and Chlorella vulgaris on the pH of the medium as determined by 31P in vivo NMR spectroscopy

  • Original Papers
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

The pH in the cytoplasm of aerobic and anaerobic cells of the green algae Chlorella fusca and Chlorella vulgaris was determined in dependence on the pH of the external medium, which was varied between pH 3 and pH 10. In aerobic cells of both species the cytoplasmic pH is maintained at a value above 7.2 even at an external pH of 3 and below 7.8 at an external pH of 10. In anaerobic cells the cytoplasmic pH shows linear dependence on external pH in the range of pH 6 to 9 (cytoplasmic pH 6.9 to 7.2), while below an external pH of 6 cytoplasmic pH is maintained at about 6.5.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

CCCP:

Carbonylcyanide-m-chlorophenyl-hydrazone

EDTA:

Ethylendiaminetetraacetic acid

MES:

2-(N-Morpholino)-ethanesulfonic acid

MOPSO:

3-(N-Morpholino)-2-hydroxy-propanesulfonic acid

NMR:

Nuclear Magnetic Resonance

pH cyt:

cytoplasmic pH

pH ex:

external pH

PIPES:

Piperazine-N,N′-bis(2-ethanesulfonic acid)

PPi :

Pyrophosphate

PP1, PP2, PP3 :

1st, 2nd, 3rd phosphate group of polyphosphates

PP4 :

core phosphate groups of polyphosphates

TRIS:

Tris-hydroxymethyl-aminomethane

References

  • Atkinson AW Jr, John PCL, Gunning BES (1974) The growth and division of the single mitochondrion and other organelles during the cell cycle of Chlorella, studied by quantitative stereology and three dimensional reconstruction. Protoplasma 81: 81–109

    Google Scholar 

  • Busa WB, Nucitelli R (1984) Metabolic regulation via intracellular pH. Am J Physiol 246: R409–438

    Google Scholar 

  • Gehl KA, Colman B (1985) Effect of external pH on the internal pH of Chlorella saccharophila. Plant Physiol 77: 917–921

    Google Scholar 

  • Grimme LH, Boardman NK (1972) Photochemical activities of a particle fraction P1 derived from the green alga Chlorella. Biochem Biophys Res Commun 49: 1617–1623

    Google Scholar 

  • Hochachka PW, Mommsen TP (1983) Protons and Anaerobiosis. Science 219: 1391–1397

    Google Scholar 

  • Kessler E (1974) Hydrogenase, photoreduction and anaerobic growth. In: Stewart WDP (ed) Algal physiology and biochemistry, Blackwell, Oxford, pp 456–473

    Google Scholar 

  • Kessler E (1982) Chemotaxonomy in the Chlorococcales. In: Round FE, Chapman DJ (eds) Progress in physiological research, Vol I. Elsevier Biomed Press, Amsterdam, pp 111–135

    Google Scholar 

  • Köppen CH (1989) NMR-Zeitreihenanalytik und zeitlich aufgelöste in-vivo 31P-NMR-Spektroskopie im Sekundenbereich, PhD thesis, University of Bremen, FRG

  • Kreuzberg K (1984) Starch fermentation via a formate producing pathway in Chlamydomonas reinhardii, Chlorogonium elongatum and Chlorella fusca. Plant Physiol 61: 87–94

    Google Scholar 

  • Küsel AC (1987) P-31 und N-15 in vivo NMR spektroskopische Untersuchungen an der Grünalge Chlorella fusca. Zur Abhängigkeit des Polyphosphate- und Stickstoff-Metabolismus von den Milieubedingungen. PhD thesis, University of Bremen, FRG

  • Küsel AC, Sianoudis J, Leibfritz D, Grimme LH, Mayer A (1989) P-31 in vivo NMR investigation on the function of polyphosphates as phosphate- and energy source during the regreening of the green alga Chlorella fusca. Arch Microbiol 152: 167–171

    Google Scholar 

  • Kugel H, Mayer A, Kirst GO, Leibfritz D (1987) In vivo P-31 NMR measurements of phosphate metabolism of Platymonas subcordiformis as related to external pH. Eur Biophys J 14: 461–470

    Google Scholar 

  • Lane AE, Burris JE (1981) Effects of environmental pH on the internal pH of Chlorella pyrenoidosa, Scenedesmus quadricauda and Euglena mutabilis. Plant Physiol 68: 439–442

    Google Scholar 

  • Mahro B, Grimme LH (1982) H2-photoreduction by green algae: The significance of anaerobic pre-incubation periods and of high light intensities for H2-photoproduction of Chlorella fusca. Arch Microbiol 132: 82–86

    Google Scholar 

  • Mahro B, Küsel AC, Grimme LH (1986) The significance of hydrogenase activity for the energy metabolism of green algae: anacrobiosis favours ATP synthesis in cells of Chlorella with active hydrogenase. Arch Microbiol 144: 91–95

    Google Scholar 

  • Marré E, Ballarin-Denti A (1985) The proton pumps of the plasmalemma and the tonoplast of higher plants. J Bioenerg Biomembr 17: 1–21

    Google Scholar 

  • Nuehrenberg B, Lesemann D, Pirson A (1968) Zur Frage eines anaeroben Wachstums von einzelligen Grünalgen. Planta 79: 162–180

    Google Scholar 

  • Roberts JKM, Wade-Jardetzky N, Jardetzky O (1981) Intracellular pH measurements by P-31 nuclear magnetic resonance. Influence of factors other than pH on P-31 chemical shifts. Biochemistry 20: 5389–5394

    Google Scholar 

  • Roberts JKM, Callis J, Wemmer D, Walbot V, Jardetzky O (1984) Mechanism of cytoplasmic pH regulation in hypoxic maize root tips and its role in survival under hypoxia. Proc Natl Acad Sci USA 81: 3379–3383

    Google Scholar 

  • Sianoudis J, Küsel AC, Naujokat T, Offermann W, Mayer A, Grimme LH, Leibfritz D (1985) Respirational activity of Chlorella fusca monitored by in vivo P-31 NMR. Eur Biophys J 13: 89–97

    Google Scholar 

  • Sianoudis J, Küsel AC, Leibfritz D, Grimme LH, Mayer A (1986a) The cytoplasmic pH of the green alga Chlorella fusca measured by P-31 NMR spectroscopy. In: Maret G, Kiepenheuer J, Boccara N (eds) Biophysical effects of steady magnetic fields. Springer, Berlin Heidelberg New York, pp 221–225

    Google Scholar 

  • Sianoudis J, Küsel AC, Mayer A, Grimme LH, Leibfritz D (1986b) Distribution of polyphosphates in cell compartments of Chlorella fusca as measured by P-31 NMR spectroscopy. Arch Microbiol 144: 48–54

    Google Scholar 

  • Sianoudis J, Küsel AC, Mayer A, Grimme LH, Leibfritz D (1987) The cytoplasmic pH in photosynthesizing cells of the green alga Clorella fusca measured by P-31 NMR spectroscopy. Arch Microbiol 147: 25–29

    Google Scholar 

  • Torimitsu K, Yasaki Y, Nagasuka K, Ohta E, Sakata M (1984) Effect of external pH on the cytoplasmic and vacuolar pHs in Mung Bean root tip cells: A P-31 nuclear magnetic resonance study. Plant Cell Physiol 25: 1403–1409

    Google Scholar 

  • Vinayakumar M, Kessler E (1975) Physiological and biochemical contribution to the taxonomy of the genus Chlorella. X. Products of glucose fermentation. Arch Microbiol 103: 13–19

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Küsel, A.C., Sianoudis, J., Leibfritz, D. et al. The dependence of the cytoplasmic pH in aerobic and anaerobic cells of the green algae Chlorella fusca and Chlorella vulgaris on the pH of the medium as determined by 31P in vivo NMR spectroscopy. Arch. Microbiol. 153, 254–258 (1990). https://doi.org/10.1007/BF00249077

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00249077

Key words

Navigation