Skip to main content
Log in

The role of calcium in the repetitive firing of neostriatal neurons

  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Summary

The Ca++-dependence of the repetitive firing of neostriatal neurons was studied in an in vitro slice preparation of the rat neostriatum. Neuronal firing was evoked by injecting depolarizing currents of 100–200 ms duration. In normal conditions, the mode of firing was tonic and showed very little adaptation. The frequency-current relation was linear over a wide range of frequencies. The repetitive firing was first enhanced and later suppressed by Co++, Mn++ and Cd++. These effects on the repetitive firing by the Ca++-channel blockers paralleled the suppression of the slow afterhyperpolarizing potential. The lowering (0.2 mM) of Ca++ had similar effects. In the presence of TEA (up to 10 mM), the cell fired both Na+ and Ca+ action potentials. The results suggest that, as in other CNS neurons of the vertebrate, in neostriatal neurons the slow afterhyperpolarizing potential (AHP) is due to a Ca++-activated K+-conductance, and that the AHP plays a crucial role in the repetitive firing of these neurons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adams PR, Constanti A, Brown DA, Clark RB (1982) Intracellular calcium activates a fast voltage-sensitive K+ current in vertebrate sympathetic neurones. Nature 296: 746–749

    Google Scholar 

  • Bargas J, Galarraga E, Aceves J (1984) Effects of tetraethylammonium on electrical properties of neostriatal neurons. Soc Neurosci Abstr 10: 348

    Google Scholar 

  • Bargas J, Galarraga E, Aceves J (1988) Electrotonic properties of neostriatal neurons are modulated by extracellular potassium. Exp Brain Res 72: 390–398

    Google Scholar 

  • Bargas J, Galarraga E, Aceves J (1989) An early outward conductance modulates the firing latency and frequency of neostriatal neurons of the rat brain. Exp Brain Res 75: 146–156

    Google Scholar 

  • Barrett EF, Barrett JN (1976) Separation of two voltage-sensitive potassium currents and demonstration of a tetrodotoxin-resistant calcium current in frog motoneurons. J Physiol (Lond) 255: 737–774

    Google Scholar 

  • Bourque CW, Randle JCR, Renaud LP (1985) Calcium dependent potassium conductance in rat supraoptic nucleus neurosecretory neurons. J Neurophysiol 54: 1375–1382

    Google Scholar 

  • Brown DA, Griffith WH (1983) Calcium-activated outward current in voltage-clamped hippocampal neurones of the guinea-pig. J Physiol (Lond) 337: 287–301

    Google Scholar 

  • Brown DA, Halliwell JV (1975) An in vitro preparation of the diencephalic interpeduncular nucleus. In: Kerkut GA, Wheal HV (eds) Electrophysiology of isolated mammalian CNS preparations. Academic Press, London, pp 285–308

    Google Scholar 

  • Calabresi P, Mercuri N, Stanzione P, Stefani A, Bernardi G (1987a) Intracellular studies on the dopamine-induced firing inhibition of neostriatal neurons in vitro: evidence for D1 receptor involvement. Neuroscience 20: 757–771

    Article  CAS  PubMed  Google Scholar 

  • Calabresi P, Misgeld U, Dodt HU (1987b) Intrinsic membrane properties of neostriatal neurons can account for their low level of spontaneous activity. Neuroscience 20: 293–303

    Article  CAS  PubMed  Google Scholar 

  • Cherubini E, Lanfumey L (1987) An inward calcium current underlying regenerative calcium potentials in rat striatal neurons in vitro enhanced by BAY K 8644. Neuroscience 21: 997–1005

    Google Scholar 

  • Connor JA (1985) Neural pacemakers and rhythmicity. Ann Rev Physiol 47: 17–28

    Google Scholar 

  • Constanti A, Sim JA (1987) Calcium-dependent potassium conductance in guinea-pig olfactory cortex neurones in vitro. J Physiol (Lond) 387: 173–194

    Google Scholar 

  • Deitmer JW, Eckert R (1985) Two components of Ca-dependent potassium current in identified neurones of Aplysia californica. Pflügers Arch 403: 353–359

    Google Scholar 

  • Dunlap K, Fischbach GD (1981) Neurotransmitters decrease the calcium conductance activated by depolarization of embryonic chick sensory neurones. J Physiol (Lond) 317: 519–535

    Google Scholar 

  • Ewald DA, Levitan IB (1987) Ion channels regulated by calcium. In: Kaczmarek LK, Levitan IB (eds) Neuromodulation. Oxford University Press, New York, pp 138–158

    Google Scholar 

  • Galarraga E, Bargas J, Aceves J (1984) Dendritic action potentials and calcium activated potassium conductance in neostriatal neurons. Soc Neurosci Abstr 10: 348

    Google Scholar 

  • Galarraga E, Bargas J, Aceves J (1985) Slow sodium and IA currents in neostriatal neurons. Soc Neurosci Abstr 11: 202

    Google Scholar 

  • Galvan M (1982) A transient outward current in rat sympathetic neurones. Neurosci Lett 31: 295–300

    Google Scholar 

  • Galvan M, Adams PR (1982) Control of calcium current in rat sympathetic neurons by norepinephrine. Brain Res 244: 135–144

    Google Scholar 

  • Galvan M, Sedlmeir C (1984) Outward currents in voltageclamped rat sympathetic neurones. J Physiol (Lond) 356: 115–133

    Google Scholar 

  • Goh JW, Pennefather PS (1987) Pharmacological and physiological properties of the after-hyperpolarization current of bullfrog ganglion neurones. J Physiol (Lond) 394: 315–330

    Google Scholar 

  • Grace AA, Bunney BS (1984a) The control of firing pattern in nigral dopamine neurons: single spike firing. J Neurosci 4: 2866–2876

    Google Scholar 

  • Grace AA, Bunney BS (1984b) The control of firing pattern in nigral dopamine neurons: burst firing. J Neurosci 4: 2877–2890

    Google Scholar 

  • Gustafsson B, Wigström H (1981) Evidence for two types of afterhyperpolarization in CA1 pyramidal cells in the hippocampus. Brain Res 106: 462–468

    Google Scholar 

  • Hille B (1984) Ionic channels of excitable membranes. Sinauer Assoc Inc. Sunderland Mass

    Google Scholar 

  • Horn JP, McAffee (1980) Alpha-adrenergic inhibition of calcium-dependent potentials in rat sympathetic neurones. J Physiol (Lond) 301: 191–204

    Google Scholar 

  • Hotson JR, Prince DA (1980) A calcium-activated hyperpolarization follows repetitive firing in hippocampal neurons. J Neurophysiol 43: 409–419

    Google Scholar 

  • Jahnsen H, Llinás R (1984) Ionic basis for the electroresponsiveness and oscillatory properties of guinea-pig thalamic neurones in vitro. J Physiol (Lond) 349: 227–247

    Google Scholar 

  • Junge D (1981) Nerve and muscle excitation, 2nd edn. Sinauer Assoc Inc Sunderland Mass

    Google Scholar 

  • Kita H, Kita T, Kitai ST (1985a) Active membrane properties of rat neostriatal neurons in an in vitro slice preparation. Exp Brain Res 60: 54–62

    Google Scholar 

  • Kita H, Kita T, Kitai ST (1985b) Regenerative potentials in rat neostriatal neurons in an in vitro slice preparation. Exp Brain Res 60: 63–70

    Google Scholar 

  • Kitai ST, Kita H (1984) Electrophysiological study of the neostriatum in brain slice preparation. In: Dingledine R (ed) Brain slices, Plenum Press, New York, pp 285–296

    Google Scholar 

  • Krnjević K, Puil E, Werman R (1978) EGTA and motoneuronal after-potentials. J Physiol (Lond) 275: 199–223

    Google Scholar 

  • Lancaster B, Adams PR (1986) Calcium-dependent current generating the afterhyperpolarization of hippocampal neurons. J Neurophysiol 55: 1268–1282

    Google Scholar 

  • Lancaster B, Pennefather P (1987) Potassium currents evoked by brief depolarizations in bull-frog sympathetic ganglion cells. J Physiol (Lond) 387: 519–548

    Google Scholar 

  • Lanthorn T, Storm J, Andersen P (1984) Current-to-frequency transduction in CA1 hippocampal pyramidal cells: slow prepotentials dominate the primary range firing. Exp Brain Res 53: 431–443

    Google Scholar 

  • Llinás R, Sugimori M (1980) Electrophysiological properties of in vitro Purkinje cell somata in mammalian cerebellar slices. J Physiol (Lond) 305: 197–213

    Google Scholar 

  • Madison DV, Nicoll RA (1984) Control of the repetitive discharge of rat CA1 pyramidal neurones in vitro. J Physiol (Lond) 354: 319–331

    Google Scholar 

  • Madison DV, Nicoll RA (1986a) Actions of noradrenaline recorded intracellularly in rat hippocampal CA1 pyramidal neurones, in vitro. J Physiol (Lond) 372: 221–244

    Google Scholar 

  • Madison DV, Nicoll RA (1986b) Cyclic adenosine 3′,5′-monophosphate mediates beta-receptor actions of noradrenaline in rat hippocampal pyramidal cells. J Physiol (Lond) 372: 245–259

    Google Scholar 

  • Meech RW (1978) Calcium-dependent potassium activation in nervous tissue. Rev Biophys Bioeng 7: 1–18

    Google Scholar 

  • Pennefather P, Lancaster B, Adams PR, Nicoll RA (1985) Two distinct Ca-dependent K currents in bullfrog sympathetic ganglion cells. Proc Natl Acad Sci USA 82: 3040–3044

    Google Scholar 

  • Reuter H (1983) Calcium channel modulation by neurotransmitters, enzymes and drugs. Nature 301: 569–574

    Google Scholar 

  • Rudy B (1988) Diversity and ubiquity of K channels. Neuroscience 25: 729–749

    Google Scholar 

  • Schwindt PC, Crill WE (1980) Properties of a persistent inward current in normal and TEA-injected motoneurons. J Neurophysiol 43: 1700–1723

    Google Scholar 

  • Stafstrom CE, Schwindt PC, Chubb MC, Crill WE (1985) Properties of persistent sodium conductance and calcium conductance of layer V neurons from cat sensorimotor cortex in vitro. J Neurophysiol 53: 153–170

    Google Scholar 

  • Stanfield PR (1983) Tetraethylammonium ions and the potassium permeability of excitable cells. Rev Physiol Biochem Pharmacol 97: 1–67

    Google Scholar 

  • Stevens DR, Gallagher JP, Shinnick-Gallagher P (1984) Intracellular recordings from rat dorsolateral septal neurons, in vitro. Brain Res 305: 353–356

    Google Scholar 

  • Storm JF (1987a) Action potential repolarization and a fast afterhyperpolarization in rat hippocampal pyramidal cells. J Physiol (Lond) 385: 733–759

    Google Scholar 

  • Storm JF (1987b) Potassium currents underlying afterhyperpolarizations (AHPs) and spike repolarization in rat hippocampal pyramidal cells (CA1). Soc Neurosci Abstr 13: 176

    Google Scholar 

  • Sugimori M, Preston RJ, Kitai ST (1978) Response properties and electrical constants of caudate nucleus neurons in the cat. J Neurophysiol 41: 1662–1675

    Google Scholar 

  • Thompson SH (1977) Three pharmacologically distinct potassium channels in molluscan neurones. J Physiol (Lond) 265: 465–488

    Google Scholar 

  • Tokimasa T (1984) Calcium-dependent hyperpolarizations in bullfrog sympathetic neurons. Neuroscience 12: 929–937

    Google Scholar 

  • Yarom Y, Sugimori M, Llinás R (1985) Ionic currents and firing patterns of mammalian vagal motoneurons in vitro. Neuroscience 16: 719–737

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Galarraga, E., Bargas, J., Sierra, A. et al. The role of calcium in the repetitive firing of neostriatal neurons. Exp Brain Res 75, 157–168 (1989). https://doi.org/10.1007/BF00248539

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00248539

Key words

Navigation