Skip to main content
Log in

The structural genes encoding CO dehydrogenase subunits (cox L, M and S) in Pseudomonas carboxydovorans OM5 reside on plasmid pHCG3 and are, with the exception of Streptomyces thermoautotrophicus, conserved in carboxydotrophic bacteria

  • Short Communications
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

Employing deoxyoligonucleotide probes and Southern hybridizations, we have examined in carboxydotrophic bacteria the localization on the genome of genes encoding the large, medium and small subunits of CO dehydrogenase (coxL, M and S, respectively). In Pseudomonas carboxydovorans OM5 coxL, M and S were identified on the plasmid pHCG3; they were absent on the chromosome. This was evident from positive hybridizations with plasmid DNA of the wild-type strain OM5 and the absence of hybridizations with chromosomal DNA from the plasmid cured mutant strain OM5–12. The genes coxL, M and S were found on plasmids in all other plasmid-containing carboxydotrophic bacteria e.g. Alcaligenes carboxydus, Azomonas B1, Pseudomonas carboxydoflava, Pseudomonas carboxydovorans OM2 and OM4. Cox L, M and S could be identified on the chromosome of the plasmid-free bacteria Arthrobacter 11/x, Bacillus schlegelii, Pseudomonas carboxydohydrogena, and Pseudomonas carboxydovorans OM3. These results essentially confirm and extend former reports that cox genes are rather conserved among carboxydotrophic bacteria of distinct taxonomic position. However, Streptomyces thermoautotrophicus is an noteworthy exception since none of the three cox genes could be detected. This refers to a new type of CO dehydrogenase and is in accord with results indicating that the S. thermoautotrophicus CO dehydrogenase has an unusual electron acceptor specificity and some other properties setting it apart from the ‘classical’ CO dehydrogenases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abbreviations

CODH:

carbon monoxide dehydrogenase

H2ase:

hydrogenase

kb:

kilobase

PRK:

phosphoribulokinase

Rubisco:

ribulosebisphosphate carboxylase

SDS:

sodium dodecylsulfate

References

  • Ausubel FM, Brent R, Kingston RE, Moore DD, Seidman JG, Smith JA, Struhl K (eds) (1987) Current protocols in molecular biology. John Wiley & Sons, New York

    Google Scholar 

  • Cho JW, Yim HS, Kim YM (1985) Acinetobacter isolates growing with carbon monoxide. Korean J Microbiol 23: 1–8

    Google Scholar 

  • Cypionka H, Meyer O (1982) Influence of carbon monoxide on growth and respiration of carboxydobacteria and other aerobic organisms. FEMS Microbiol Lett 15: 209–214

    Google Scholar 

  • Cypionka H, Meyer O (1983a) The cytochrome composition of carboxydotrophic bacteria. Arch Microbiol 135: 293–298

    Google Scholar 

  • Cypionka H, Meyer O (1983b) Carbon monoxide-insensitive respiratory chain of Pseudomonas carboxydovorans. J Bacteriol 156: 1178–1187

    Google Scholar 

  • Edman P, Begg G (1967) A protein sequenator. Eur J Biochem 1:80–91

    Google Scholar 

  • Friedrich B, Kortlücke C, Hogrefe C, Ebertz G, Silber B, Warrelmann J (1986) Genetics of hydrogenase from aerobic lithoautotrophic bacteria. Biochimie 68: 133–145

    Google Scholar 

  • Frunzke K, Meyer O (1990) Nitrate respiration, denitrification and utilization of nitrogen sources by aerobic carbon monoxide-oxidizing bacteria. Arch Microbiol 154: 168–174

    Google Scholar 

  • Futo S, Meyer O (1986) CO2 is the first species formed upon CO oxidation by CO dehydrogenase from Pseudomonas carboxydovorans. Arch Microbiol 145: 358–360

    Google Scholar 

  • Gadkari D, Schricker K, Acker G, Kroppenstedt RM, Meyer O (1990) Streptomyces thermoautotrophicus sp. nov., a thermophilic CO- and H2-oxidizing obligate chemolithoautotroph. Appl Environ Microbiol 56: 3727–3734

    Google Scholar 

  • Gerstenberg C, Schlegel HG, Friedrich B (1982) Physical evidence for plasmids in autotrophic, especially hydrogen-oxidizing bacteria. Arch Microbiol 133: 90–96

    Google Scholar 

  • Hugondieck I, Meyer O (1991) Genes encoding ribulosebisphosphate carboxylase and phosphoribulokinase are duplicated in Pseudomonas carboxydovorans and conserved in carboxydotrophic bacteria. Arch Microbiol 157: 92–96

    Google Scholar 

  • Jacobitz S, Meyer O (1989) Removal of CO dehydrogenase from Pseudomonas carboxydovorans cytoplasmic membranes, rebinding of CO dehydrogenase to depleted membranes, and restoration of respiratory activities. J Bacteriol 171: 6294–6299

    Google Scholar 

  • Kado CI, Liu ST (1981) Rapid procedure for detection and isolation of large and small plasmids. J Bacteriol 145: 1365–1373

    Google Scholar 

  • Kim KS, Ro YT, Kim YM (1989) Purification and some properties of carbon monoxide dehydrogenase from Acinetobacter sp. strain JC1 DSM 3803. J Bacteriol 171: 958–964

    Google Scholar 

  • Kraut M, Meyer O (1988) Plasmids in carboxydotrophic bacteria: physical and restriction analysis. Arch Microbiol 149: 540–546

    Google Scholar 

  • Kraut M, Hugendieck I, Herwig S, Meyer O (1989) Homology and distribution of CO dehydrogenase structural genes in carboxydotrophic bacteria. Arch Microbiol 152: 335–341

    Google Scholar 

  • Krüger B, Meyer O (1984) Thermophilic bacilli growing with carbon monoxide. Arch Microbiol 139: 402–408

    Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680–685

    Google Scholar 

  • Lyons CM, Justin P, Colby J, Williams E (1984) Isolation, characterization and autotrophic metabolism of a moderately thermophilic carboxydobacterium, Pseudomonas thermocarboxydovorans sp. nov. J Gen Microbiol 130: 1097–1105

    Google Scholar 

  • Maniatis T, Fritsch EF, Sambrook J (eds) (1982) Molecular cloning — a laboratory manual. Cold Spring Harbor Laboratory, New York

    Google Scholar 

  • Marmur J (1961) A procedure for the isolation of deoxyribonucleic acid from microorganisms. J Mol Biol 3: 208–218

    Google Scholar 

  • Meyer O (1982) Chemical and spectral properties of carbon monoxide: methylene blue oxidoreductase. J Biol Chem 257: 1333–1341

    Google Scholar 

  • Meyer O (1985) Metabolism of aerobic carbon monoxide-utilizing bacteria. In: Poole RK, Dow CS (eds) Microbial gas metabolism: mechanistic, metabolic and biotechnological aspects. Academic Press; London, pp 131–151

    Google Scholar 

  • Meyer O (1988) Biology and biotechnology of aerobic carbon monoxide-oxidising bacteria. In: Finn RK, Präve P, Schlingmann M, Crueger W, Esser K, Thauer R, Wagner F (eds) Biotechnology focus 1. Hanser Publishers Munich, pp 3–31

    Google Scholar 

  • Meyer O, Fiebig K (1985) Enzymes oxidizing carbon monoxide. In: Degn H, Cox RP, Toftlund H (eds) Gas enzymology. Reidel, Dordrecht, pp 147–168

    Google Scholar 

  • Meyer O, Schlegel HG (1978) Reisolation of the carbon monoxide utilizing hydrogen bacterium Pseudomonas carboxydovorans (Kistner) comb. nov. Arch Microbiol 118: 35–43

    Google Scholar 

  • Meyer O, Schlegel (1979) Oxidation of carbon monoxide in cell extracts of Pseudomonas carboxydovorans. J Bacteriol 137: 811–817

    Google Scholar 

  • Meyer O, Schlegel HG (1980) Carbon monoxide: methylene blue oxidoreductase from Pseudomonas carboxydovorans. J Bacteriol 141: 74–80

    Google Scholar 

  • Meyer O, Schlegel HG (1983) Biology of aerobic carbon oxidizing bacteria. Ann Rev Microbiol 37: 277–310

    Google Scholar 

  • Meyer O, Jacobitz S, Krüger B (1986) Biochemistry and physiology of aerobic carbon monoxide-utilizing bacteria. FEMS Microbiol Rev 39: 161–179

    Google Scholar 

  • Meyer O, Frunzke K, Gadkari D, Jacobitz S, Hugendieck I, Kraut M (1990) Utilization of carbon monoxide by aerobes: recent advances. FEMS Microbiol Rev 87: 253–260

    Google Scholar 

  • Towbin H, Staehelin T, Gordon J (1979) Electrophoretic transfer of proteins from polyacrylamide-gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci USA 76: 4350–4354

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hugendieck, I., Meyer, O. The structural genes encoding CO dehydrogenase subunits (cox L, M and S) in Pseudomonas carboxydovorans OM5 reside on plasmid pHCG3 and are, with the exception of Streptomyces thermoautotrophicus, conserved in carboxydotrophic bacteria. Arch. Microbiol. 157, 301–304 (1992). https://doi.org/10.1007/BF00245166

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00245166

Key words

Navigation