Skip to main content
Log in

Electrochemistry of room-temperature chloroaluminate molten salts at graphitic and nongraphitic electrodes

  • Papers
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

The electrochemistry of unbuffered and buffered neutral AlCl3-EMIC-MC1 (EMIC =1-ethyl-3-methylimidazolium chloride and MC1= LiCl, NaCl or KCl) room-temperature molten salts was studied at graphitic and nongraphitic electrodes. In the case of the unbuffered 1 : 1 AlCl3 : EMIC molten salt, the organic cation reductive intercalation at about −1.6 V and the AlCl4 anion oxidative intercalation at about +1.8 V were evaluated at porous graphite electrodes. It was determined that the instability of the organic cation in the graphite lattice limits the performance of a dual intercalating molten electrolyte (DIME) cell based on this electrolyte. In buffered neutral 1.1 :1.0:0.1 AIC13: EMIC : MCl (MC1= LiCl, NaCl and KCl) molten salts, the organic cation was intercalated into porous and nonporous graphite electrodes with similar cycling efficiencies as the unbuffered 1 : 1 melt; however, additional nonintercalating processes were also found to occur between 1 and −1.6 V in the LiCl and NaCl systems. A black electrodeposit, formed at −1.4 V in the LiCl buffered neutral melt, was analysed with X-ray photoelectron spectroscopy and X-ray diffraction and was found to be composed of LiCl, metallic phases containing lithium and aluminium, and an alumina phase formed from reaction with the atmosphere. A similar film appears to form in the NaCl buffered neutral melt, but at a much slower rate. These films are believed to form by reduction of the AlCl4 anion, a process promoted by decreasing the ionic radius of the alkali metal cation in the molten salt. The partially insulating films may limit the usefulness of the LiCl and NaCl buffered neutral melts as electrolytes for rechargeable graphite intercalation anodes and may interfere with other electrochemical processes occurring negative of −1 V.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. T. Carlin, H. C. De Long, J. Fuller and P. C. Trulove, J. Electrochem. Soc. 141 (1994) L73.

    Google Scholar 

  2. C. L. Hussey, in ‘Chemistry of Nonaqueous Solvents’ (edited by A. Popov and G. Mamantov), VCH, New York (1994), chapter 4.

  3. R. T. Carlin and J. S. Wilkes, in ‘Chemistry of Nonaqueous Solvents’ (edited by A. Popov and G. Mamantov), VCH, New York (1994), chapter 5.

  4. C. Scordilis, J. Fuller, R. T. Carlin and J. S. Wilkes, J. Electrochem. Soc. 139 (1992) 694.

    Google Scholar 

  5. T. L. Riechel and J. S. Wilkes, ibid. 140 (1993) 3104.

    Google Scholar 

  6. I. C. Quarmby, R. A. Mantz, L. M. Goldberg and R. A. Osteryoung, Anal. Chem. 66 (1994) 3558.

    Google Scholar 

  7. Y. S. Fung and S. M. Chan, J. Appl. Electrochem. 23 (1993) 346.

    Google Scholar 

  8. J. L. Wong and J. H. Keck, Jr., J. Org. Chem. 39 (1974) 2398.

    Google Scholar 

  9. J. O. Besenhard, H. Mohwald and J. J. Nickl, Carbon 18 (1980) 339.

    Google Scholar 

  10. Z. Zhang and M. M. Lerner, J. Electrochem. Soc. 140 (1993) 742.

    Google Scholar 

  11. R. T. Carlin, J. Fuller and M. Hedenskoog, ibid. 141 (1994) L21.

    Google Scholar 

  12. K. Kinoshita, ‘Carbon: Electrochemical and Physiochemical Properties’, J. Wiley & Sons, New York (1988).

    Google Scholar 

  13. M. M. Doeff, Y. Ma, S. J. Visco and L. C. De Jonghe, J. Electrochem. Soc. 140 (1993) L169.

    Google Scholar 

  14. N. Bartlett and B. W. McQuillan, in ‘Intercalation Chemistry’ (edited by M. S. Whittingham and M. Stanley), Academic Press, New York (1982), chapter 2.

  15. JCPDS card 42-423.

  16. N. N. Greenwood and A. Earnshaw, ‘Chemistry of the Elements’, Pergamon Press, New York (1984).

    Google Scholar 

  17. J. F. Moulder, W. F. Stickle, P. E. Sobel and K. D. Bomben, ‘Handbook of Photoelectron Spectroscopy’, PerkinElmer Corporation, Physical Electronics Division, Eden Prairie, MN (1992).

    Google Scholar 

  18. J. P. Contour, A. Salesse, M. Froment, M. Garreau, J. Thevenin and D. J. Warrin, J. Microsc. Spectrosc. Electron. 4 (1979) 483.3.

    Google Scholar 

  19. C. D. Wagner, in ‘Practical Surface Analysis’, 2nd edn, vol. 1, ‘Auger and X-Ray Photoelectron Spectroscopy’ (edited by D. Briggs and M. P. Seah), J. Wiley, Chichester (1985, appendix 5.

    CAS  PubMed  Google Scholar 

  20. K. Kanamura, H. Tamura and Z. Takehara, J. Electroanal. Chem. 333 (1992) 127.

    Google Scholar 

  21. W. F. Egelhoff, Surf. Sci. Rept. 6 (1987) 253.

    Google Scholar 

  22. C. D. Wagner, D. E. Passoja, H. F. Hillary, T. G. Kinsky, H. A. Six, W. T. Jansen and J. A. Taylor, J. Vac. Sci. Technol. 21 (1982) 933.

    Google Scholar 

  23. H. Ebel, M. F. Ebel, R. Svagera and Winklmayer, J. Electron Spectrosc. Relat. Phenom. 57 (1991) 15.

    Google Scholar 

  24. T. J. Carney, P. Tsakiropoulos, J. F. Watts and J. E. Castle, Int. J. Rapid Solidification 1990 (1990) 189.

    Google Scholar 

  25. R. T. Carlin and R. A. Osteryoung, J. Electrochem. Soc. 136 (1989) 1409.

    Google Scholar 

  26. C. Scordilis-Kelley and R. T. Carlin, ibid. 140 (1993) 1607.

    Google Scholar 

  27. J. N. Reimers and J. R. Dahn, Phys. Rev. B. 47 (1993) 2995.

    Google Scholar 

  28. A. J. McAlister, Bull. Alloy Phase Diagrams 3 (1982) 177.

    Google Scholar 

  29. K. H. Stern, J. Chem. Ed. 46 (1969) 645.

    Google Scholar 

  30. J. H. Espenson, ‘Chemical Kinetics and Reaction Mechanisms’, McGraw-Hill, New York (1981).

    Google Scholar 

  31. Y. S. Fung and S. M. Chau, Inorg. Chem. 34 (1995) 2371.

    Google Scholar 

  32. J. A. Boon, R. T. Carlin, A. M. Elias and J. S. Wilkes. J. Chem. Cryst. 25 (1995) 57.

    Google Scholar 

  33. A. J. McAlister, Bull. Alloy Phase Diagrams 4 (1983) 407.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Carlin, R.T., Fuller, J., Kuhn, W.K. et al. Electrochemistry of room-temperature chloroaluminate molten salts at graphitic and nongraphitic electrodes. J Appl Electrochem 26, 1147–1160 (1996). https://doi.org/10.1007/BF00243740

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00243740

Keywords

Navigation