Skip to main content
Log in

Kinetic characterization of plasma membrane atpase from Saccharomyces cerevisiae

  • General Articles
  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Summary

  1. 1.

    Plasma membrane preparations have been isolated from spheroplasts of Saccharomyces cerevisiae, strain R XII, via lysis and subsequent differential centrifugation. These preparations are almost devoid of mitochondria) contamination.

  2. 2.

    The plasma membrane ATPase is fairly stable when refrigerated, but loses activity at 8 °C and above. Below pH 5.6 the ATPase is irreversibly inactivated. The enzyme also splits GTP and ITP, although to a lesser extent.

  3. 3.

    Mg2+-ions are essential as part of the reactive substrate, MgATP, and furthermore they activate the ATPase. Optimal conditions depend on substrate concentration. When the concentration of free Mg2+ ions exceeds about 0.1 mm, competitive inhibition occurs.

  4. 4.

    In the range of pH 5.6–9.2 two functional groups dissociate. One, with pKb = 8.1 ± 0.1 participated in substrate binding and another one with pKb′ = 8.1 ± 0.1 is involved in substrate splitting.

  5. 5.

    The experiments with group-specific inhibitors suggest that an α-amino group and a sulfhydryl residue are involved in substrate binding and conversion. Furthermore, imidazole, tryptophan and carboxyl residues may be important for the catalytic process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

E, EH+ :

free enzyme with various degrees of protonation

S:

substrate

P:

product

Km′:

modified Michaelis constant (in the presence of activator)

\(\tilde K\) m H+, \(\tilde v\) H+ :

apparent constants, which depend on H+ ion concentration

KMg :

dissociation constant of the EMg complex

KMg′:

dissociation constant of the EMgS complex

Ki :

inhibition constant = dissociation constant of the EM92 complex

Tricin:

N-Tris-(hydroxymetyl)-methyl-glycine

MES:

morpholino-ethyl-sulfonic acid

DCCD:

N,N′ dicyclohexyl carbodiimide

References

  1. Takeshige, K., Hess, B., Böhm, M., Zimmer-Telschow, H., 1976. Hoppe-Seyler's Z. Physiol. Chem. 357, 1605–1622.

    Google Scholar 

  2. Griffiths, D. E., Houghton, L., 1974. Eur. J. Biochem. 46, 157–167.

    Google Scholar 

  3. Schatz, G., Penefsky, H. S., Racker, E. 1967. J. Biol. Chem. 242, 2552–2560.

    Google Scholar 

  4. Somlo, M., Reid, R. A., Krupa, M., 1977. Biochem. J. 162, 51–59.

    Google Scholar 

  5. Matile, Ph., Moor, H., Mühlthaler, K. 1967. Arch. Microbiol. 58, 201–211.

    Google Scholar 

  6. Christensen, M. S. Cirillo, V. P. 1972. J. Bacteriol. 110, 1190–1205.

    Google Scholar 

  7. Kuo, S. C., Lampen, J. O. 1975. Biochim. biophys. Acta 389, 145–153.

    Google Scholar 

  8. Fuhrmann, G. F., Wherli, E., Boehm, C. 1974. Biochim. biophys. Acta 363, 295–310.

    Google Scholar 

  9. Delhez, J., Dufour, J. -P., Thines, D and Goffeau, A. 1977. Eur. J. Biochem. 79, 319–328.

    Google Scholar 

  10. Sigler, K., Kotyk, A., 1976. Mol. Cell. Biochem. 12, 73–79.

    Google Scholar 

  11. Foury, F., Boutry, M., Coffeau, A. 1976. Arch. intern. Biochim. 84, 618–619.

    Google Scholar 

  12. Mitchell, P. 1973. Bioenergetics 4, 63–91.

    Google Scholar 

  13. Ahlers, J. 1974. Biochem. J. 141, 257–263.

    Google Scholar 

  14. Ahlers, J., Kabisch, D., Günther, Th. 1975. Can. J. Biochem. 53, 658–665.

    Google Scholar 

  15. Arnold, A., Wolf, H. U., Ackermann, B. P., Bader, H. 1976. Analyt. Biochem. 71, 209–213.

    Google Scholar 

  16. Lacy, J. 1965. Analyst 90, 65–75.

    Google Scholar 

  17. Wolf, H. U. Adolph, L. 1969. Eur. J. Biochem. 8, 68–74.

    Google Scholar 

  18. Slater, E. C. 1949. Biochem. J. 44, 305–318.

    Google Scholar 

  19. Cabib, E. (1972) in: Methods in Enzymology (Ginsburg, V., ed.) Vol. 28, pp. 572–580, Academic Press, New York and London.

  20. Schaffner, W., Weissmann, C. 1973. Anal. Biochem. 56, 502–514.

    Google Scholar 

  21. Sachs, L. 1974. in: “Angewandte Statistik”, p. 219, Springer Verlag, Berlin, New York.

    Google Scholar 

  22. Sachs, L. 1974. in: Angewandte Statistik", p. 384, Springer Verlag, Berlin, New York.

    Google Scholar 

  23. Cavalli-Sforza, L. 1974. in: Biometrie, pp. 167–170, G. Fischer Verlag, Stuttgart.

    Google Scholar 

  24. Eisenthal, R., Cornish-Bowden, A. 1974. Biochem. J. 139, 715–720.

    Google Scholar 

  25. Botts, J., Morales, M. 1953. Trans. Faraday Soc. 49, 696–707.

    Google Scholar 

  26. Laidler, K. J. 1956. Trans. Faraday Soc. 52, 1374–1382.

    Google Scholar 

  27. Ohlenbusch, H. D. 1962. Die Kinetik der Wirkung von Effektoren auf stationäre Fermentsysteme, Springer-Verlag, Berlin.

    Google Scholar 

  28. Wiemken, A. 1975. Methods in Cell Biology 12, 99–109.

    Google Scholar 

  29. Duran, A., Bowers, B., Cabib, E. 1975. Proc. Nat. Acad. Sci. USA 72, 3952–3955.

    Google Scholar 

  30. Schatz, G. 1965. Biochim. biophys. Acta 96, 342–345.

    Google Scholar 

  31. Atkins, G. L., Nimmo, J. A. 1975. Biochem. J. 149, 775–777.

    Google Scholar 

  32. Ahlers, J., Gunther, Th. 1975. Z. Naturforschg. 30c, 412–416.

    Google Scholar 

  33. Ahlers, J., Gunther, Th. 1975. Arch. Biochem. Biophys. 171, 163–169.

    Google Scholar 

  34. Dixon, M. 1953. Biochem. J. 55, 161–170.

    Google Scholar 

  35. Dixon, M., Webb, E. C. 1965. in: Enzymes, Longmanns, Green and Co., Ltd., London.

    Google Scholar 

  36. Wolf, H. U. 1972. Biochim. biophys. Acta 266, 361–375.

    Google Scholar 

  37. Sillén, L. G., Martell, A. E. 1964. Chem. Soc. Spec. Publ. no. 17.

  38. Fields, R. 1972. in: Methods in Enzymology (Hirs, C. H. W. and Timasheff, S. N., eds). Vol. 25, pp. 464–468, Academic Press Inc., New York, London.

  39. Matsushima, A., Hachimori, Y., Inada, Y. and Shibata, K. 1967. J. Biochem. 63, 328–336.

    Google Scholar 

  40. Riordan, J. F. and Vallee, B. L. 1972. in: Methods in Enzymology, Vol. 25, pp. 451–453.

    Google Scholar 

  41. Habeeb, A. F. S. A. 1972. in: Methods in Enzymology, Vol. 25, pp. 457–459.

    Google Scholar 

  42. Riordan, J. F., Vallee, B. L. 1972. in: Methods in Enzymology, Vol. 25, pp. 500–506, 515–521.

    Google Scholar 

  43. Takahashi, K. 1968. J. Biol. Chem. 243, 6171–6179.

    Google Scholar 

  44. Ovadi, J., Libor, S., Elödi, P. 1967. Acta Biochim. Biophys. Acad. Sci. Hung. 2, 455–458.

    Google Scholar 

  45. Gold, A. M. 1972. in: Methods in Enzymology, Vol. 25, pp. 706–711.

    Google Scholar 

  46. Horton, H. R., Koshland, D. E. Jr. 1972. in: Methods in Enzymology, Vol. 25, pp. 468–482.

    Google Scholar 

  47. Carraway, K. L., Koshland, D. E. Jr. 1972. in: Methods in Enzymology, Vol. 25, pp. 616–623.

    Google Scholar 

  48. Phillips, J. L., Azari, D. 1971. Biochem. 10, 1160.

    Google Scholar 

  49. Patel, L., Kaback, H. R. 1976. Biochem. 15, 2741–2746.

    Google Scholar 

  50. Roisin, M. P., Kepes, A. 1973. Biochim. biophys. Acta 305, 249–259.

    Google Scholar 

  51. Peter, H. W., Ahlers, J. 1975. Arch. Biochem. Biophys. 170, 169–178.

    Google Scholar 

  52. Feinstein, D. L., Fisher, R. J. 1977. Biochem. J. 167, 497–499.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ahlers, J., Ahr, E. & Seyfarth, A. Kinetic characterization of plasma membrane atpase from Saccharomyces cerevisiae. Mol Cell Biochem 22, 39–49 (1978). https://doi.org/10.1007/BF00241469

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00241469

Keywords

Navigation