Skip to main content
Log in

Postnatal shaping of callosal connections from sensory areas

  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Summary

Horseradish peroxidase (HRP) was injected unilaterally into the first and second visual areas (VI and V2; areas 17 and 18) of 20 kittens aged between 2 and 90 days and into the second somatosensory area (S2) of 16 kittens aged between 1 and 52 days. The radial and tangential (normal and parallel to the pial surface, respectively) distributions of neurones giving origin to callosal axons (callosal neurones) were studied. In adult cats, callosal efferent zones (CZs) are defined by the distribution of callosal neurones. CZs occupy, in the visual cortices, tangentially and radially restricted parts of areas 17, 18, 19 of the lateral suprasylvian gyms and in the somatosensory cortices, parts of SI and S2. At birth, callosal neurones are distributed throughout the tangential extent of visual and somatosensory areas; they are also more widespread in depth than in the adult. During the first postnatal month, as a result of the gradual disappearence of callosal neurones from parts of the visual and somatosensory areas, the adult CZs emerge. The CZ in areas 17 and 18 undergoes a further tangential reduction during the second and third postnatal months.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adams J C (1977) Technical considerations on the use of horseradish peroxidase as a neuronal marker. Neuroscience 2: 141–145

    Google Scholar 

  • Angevine J B Jr, Sidman R L (1961) Autoradiographic study of cell migration during histogenesis of cerebral cortex in the mouse. Nature 192: 766–768

    Google Scholar 

  • Anker R L, Cragg B G (1974) Development of the extrinsic connections of the visual cortex in the cat. J Comp Neurol 154: 29–42

    Google Scholar 

  • Berlucchi G, Gazzaniga M S, Rizzolatti G (1967) Microelectrode analysis of transfer of visual information by the corpus callosum. Arch Ital Biol 105: 583–596

    Google Scholar 

  • Bilge M, Bingle A, Seneviratne K N, Whitteridge D (1967) A map of the visual cortex in the cat. J Physiol (Lond) 191: 116P-118P

    Google Scholar 

  • Cajal S-R (1894) Les nouvelles idées sur la structure du systéme nerveux chez l'homme et chez les vertébrés. Reinwald, Paris p 59–63

    Google Scholar 

  • Cajal S-R (1911) Histologie du systéme nerveux de l'homme et des vertébrés. Maloine, Paris

    Google Scholar 

  • Caminiti R, Innocenti G M, Manzoni T (1979) The anatomical substrate of callosal messages from SI and SII in the cat. Exp Brain Res 34: 453–470

    Google Scholar 

  • Changeux J-P, Danchin A (1976) Selective stabilisation of developing synapses as a mechanism for the specification of neuronal networks. Nature 264: 705–712

    Google Scholar 

  • Choudhury B P, Whitteridge D, Wilson M E (1965) The function of the callosal connections of the visual cortex. Quart J Exp Physiol 50: 214–219

    Google Scholar 

  • Cowan W M (1973) Neuronal death as a regulative mechanism in the control of cell number in the nervous system. In: Rockstein M (ed) Development and aging in the nervous system. Academic Press, New York, p 19–41

    Google Scholar 

  • Cragg B G (1975) The development of synapses in the visual system of the cat. J Comp Neurol 160: 147–166

    Google Scholar 

  • Dürsteier M R, Garey L J, Movshon J A (1976) Reversal of the morphological effects of monocular deprivation in the kitten's lateral geniculate nucleus. J Physiol (Lond) 261: 189–210

    Google Scholar 

  • Ebner F F, Myers R E (1965) Distribution of corpus callosum and anterior commissure in cat and raccoon. J Comp Neurol 124: 353–366

    Google Scholar 

  • Elberger A J (1979) The role of the corpus callosum in the development of interocular eye alignment and the organization of the visual field in the cat. Exp Brain Res 36: 71–85

    Google Scholar 

  • Fleischhauer K, Schlüter G (1970) Über das postnatale Wachstum des Corpus callosum der Katze (Felis domestica). Z Anat Entwick-Gesch 132: 228–239

    Google Scholar 

  • Fleischhauer K, Wartenberg H (1967) Elektronenmikroskopische Untersuchungen über das Wachstum der Nervenfasern und über das Auftreten von Markscheiden im Corpus callosum der Katze. Z Zellforsch 83: 568–581

    Google Scholar 

  • Garey L J, Blakemore C (1977) Monocular deprivation: Morphological effects on different classes of neurons in the lateral geniculate nucleus. Science 195: 414–416

    Google Scholar 

  • Gfeller-Leuba G (1977) Maturation postnatale quantitative de lécorce cérébrale de la souris. Thése, Université de Lausanne, Faculté des Sciences

  • Glaser E M, Van der Loos H (1965) A semi-automatic computer microscope for the analysis of neuronal morphology. IEEE Trans Bio-Med Engin 12: 22–31

    Google Scholar 

  • Goldman P S, Nauta W J H (1977) Columnar distribution of cortico-cortical fibers in the frontal association, limbic, and motor cortex of the developing rhesus monkey. Brain Res 122: 393–413

    Google Scholar 

  • Grafstein B (1963) Postnatal development of the transcallosal evoked response in the cerebral cortex of the cat. J Neurophysiol 26: 79–99

    Google Scholar 

  • Graham R C Jr, Karnovsky M J (1966) The early stages of absorption of injected horseradish peroxidase in the proximal tubules of mouse kidney: Ultrastructural cytochemistry by a new technique. J Histochem Cytochem 14: 291–302

    Google Scholar 

  • Guillery R W (1972) Binocular competition in the control of geniculate cell growth. J Comp Neurol 144: 117–130

    Google Scholar 

  • Guillery R W, Stelzner D J (1970) The differential effects of unilateral lid closure upon the monocular and binocular segments of the dorsal lateral geniculate nucleus in the cat. J Comp Neurol 139: 413–422

    Google Scholar 

  • Hassler R, Muhs-Clement K (1964) Architektonischer Aufbau des sensomotorischen und parietalen Cortex der Katze. J Hirnforsch 6: 377–420

    Google Scholar 

  • Henneman E, Somjen G, Carpenter D O (1965) Functional significance of cell size in spinal motoneurons. J Neurophysiol 28: 560–599

    Google Scholar 

  • Hetzko D (1968) Über die postnatale Zunahme des Capillarvolumens im Corpus callosum der Katze. Z Anat Entwickl-Gesch 127: 138–144

    Google Scholar 

  • Hillebrand H (1966) Quantitative Untersuchungen über postnatale Veränderungen der Glia im Corpus callosum der Katze. Z Zellforsch 73: 303–312

    Google Scholar 

  • Hubel D H, Wiesel T N (1967) Cortical and callosal connections concerned with the vertical meridian of the visual fields in the cat. J. Neurophysiol 30: 1561–1573

    Google Scholar 

  • Innocenti G M (1978) Postnatal development of interhemispheric connections of the cat visual cortex. Arch Ital Biol 116: 463–470

    Google Scholar 

  • Innocenti G M (1979a) Adult and neonatal characteristics of the callosal zone at the boundary between areas 17 and 18 in the cat. In: Steele, Rüssel I, Van Hof M W, Berlucchi G (eds) Structure and function of the cerebral commissures. Macmillan, London, pp 244–258

    Google Scholar 

  • Innocenti G M (1979b) A hypothesis on the efferent system from the visual cortex. In: Freeman R D (ed) Developmental neurobiology of vision. Plenum Press, New York, pp 227–234

    Google Scholar 

  • Innocenti G M (1979c) (in press) The primary visual pathway through the corpus callosum: morphological and functional aspects in the cat. Arch Ital Biol

  • Innocenti G M, Fiore L (1976) Morphological correlates of visual field transformation in the corpus callosum: Neurosci Letters 2: 245–252

    Google Scholar 

  • Innocenti G M, Fiore L, Caminiti R (1977) Exuberant projection into the corpus callosum from the visual cortex of newborn cats. Neurosci Letters 4: 237–242

    Google Scholar 

  • Innocenti G M, Frost D O (1978) Visual. experience and the development of the efferent system to the corpus callosum. Neurosci Abstr 4: 475

    Google Scholar 

  • Innocenti G M, Frost D O (1979) Effects of visual experience on the maturation of the efferent system to the corpus callosum. Nature 280: 231–234

    Google Scholar 

  • Jacobson M (1978) Developmental neurobiology, 2nd ed. Plenum Press, New York London

    Google Scholar 

  • Jones E G, Powell T P S (1968) The commissural connexions of the somatic sensory cortex in the cat. J Anat 103: 433–455

    PubMed  Google Scholar 

  • Kuypers H G J M, Bentivoglio M, VanderKooy D, Catsman-Berrevoets C E (1979) Retrograde transport of bisbenzimide and propidium iodide through axons to their parent cell bodies. Neurosci Letters 12: 1–7

    Google Scholar 

  • Maciewicz R J (1974) Afferents to the lateral suprasylvian gyrus of the cat traced with horseradish peroxidase. Brain Res 78: 139–140

    Google Scholar 

  • Mesulam M-M (1978) A tetramethyl benzidine method for the light microscopic tracing of neural connections with horseradish peroxidase (HRP) neurohistochemistry. Society for Neuroscience, Short Course, St. Louis

  • Meyerson B A (1968) Ontogeny of interhemispheric functions. An electrophysiological study in pre- and postnatal sheep. Acta Physiol Scand [Suppl] 312: 1–111

    Google Scholar 

  • Rakic P, Yakovlev P I (1968) Development of the corpus callosum and cavum septi in man. J Comp Neurol 132: 45–72

    CAS  PubMed  Google Scholar 

  • Rubel E W (1971) Comparison of somatotopic organization in sensory neocortex of newborn kittens and adult cats. J Comp Neurol 143: 447–480

    Google Scholar 

  • Sanderson K J (1971) The projection of the visual field to the lateral geniculate and medial interlaminar nuclei in the cat. J Comp Neurol 143: 101–118

    Google Scholar 

  • Sanides D, Donate-Oliver F (1978) Identification and localisation of some relay cells in cat visual cortex. In: Brazier M A B, Petsche H (eds) Architectonics of the cerebral cortex. Raven Press, New York, pp 227–234

    Google Scholar 

  • Seggie J, Berry M (1972) Ontogeny of interhemispheric evoked potentials in the rat: Significance of myelination of the corpus callosum. Exp Neurol 35: 215–232

    Google Scholar 

  • Shanks M F, Rockel A J, Powell T P S (1975) The commissural fibre connections of the primary somatic sensory cortex. Brain Res 98: 166–171

    Google Scholar 

  • Shatz C (1977a) Abnormal interhemispheric connections in the visual system of Boston Siamese cats: A physiological study. J Comp Neurol 171: 229–246

    Google Scholar 

  • Shatz C (1977b) Anatomy of interhemispheric connections in the visual system of Boston Siamese and ordinary cats. J Comp Neurol 173: 497–518

    Google Scholar 

  • Shoumura K (1974) An attempt to relate the origin and distribution of commissural fibers to the presence of large and medium pyramids in layer III in the cat's visual cortex. Brain Res 67: 13–25

    Google Scholar 

  • Sidman R L, Rakic P (1973) Neuronal migration, with special reference to developing human brain: a review. Brain Res 62: 1–35

    Google Scholar 

  • So K-F, Schneider G E (1978) Postnatal development of retinogeniculate projections in Syrian hamsters: An anterograde HRP study. Neurosci Abstr 4: 127

    Google Scholar 

  • Stone J, Fukuda Y (1974) Properties of cat retinal ganglion cells: A comparison of W-cells with X- and Y-cells. J Neurophysiol 37: 722–748

    Google Scholar 

  • Tusa R J, Palmer L A, Rosenquist A C (1978) The retinotopic organization of area 17 (striate cortex) in the cat. J Comp Neurol 177: 213–236

    Google Scholar 

  • Westheimer G, Mitchell D E (1969) The sensory stimulus for disjunctive eye movements. Vision Res 9: 749–755

    Google Scholar 

  • Wiesel T N, Hubel D H (1965) Comparison of the effects of unilateral and bilateral eye closure on cortical unit responses in kittens. J Neurophysiol 28: 1029–1040

    Google Scholar 

  • Wise S P, Jones E G (1976) The organization and postnatal development of the commissural projection of the rat somatic sensory cortex. J Comp Neurol 168: 313–344

    Google Scholar 

  • Wise S P, Jones E G (1978) Developmental studies of thalamocortical and commissural connections in the rat somatic sensory cortex. J Comp Neurol 178: 187–208

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Supported by the Swiss National Science Foundation (3.492.075 and 3.319-0.78)

Part of these experiments was carried out at the Institute of Physiology of the University of Ancona

Rights and permissions

Reprints and permissions

About this article

Cite this article

Innocenti, G.M., Caminiti, R. Postnatal shaping of callosal connections from sensory areas. Exp Brain Res 38, 381–394 (1980). https://doi.org/10.1007/BF00237518

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00237518

Key words

Navigation