Skip to main content
Log in

Classical conditioning of the nictitating membrane response of the rabbit

III. Connections of cerebellar lobule HVI

  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Summary

We report the connections of cerebellar cortical lobule HVI in the rabbit. We have studied the anterograde and retrograde transport of wheatgerm-agglutinated horseradish peroxidase (WGA-HRP) following its injection into HVI to reveal efferent and afferent connections. All of the cases showed strong anterograde transport to the anterior interpositus nucleus (AIP) — indicating that this is the major efferent target of HVI. Retrogradely labelled cells were found in the inferior olivary, spinal trigeminal, lateral reticular, inferior vestibular and pontine nuclei. Within the olive, the medial part of the rostral dorsal accessory olive (DAO) and the adjacent medial part of the principal olive (PO) were consistently labelled in all cases. This area is known to receive somatosensory information from the face and neck. There was no projection to the hemispheral part of lobule VI from visual parts of the olive within the dorsal cap and medial parts of the medial accessory olive. Likely sources of visual and auditory information to HVI are the dorsolateral basilar pontine nuclei and nucleus reticularis tegmenti pontis, which were densely labelled in all cases. These anatomical findings are consistent whith the suggestion that, during NMR conditioning, information related to the periorbital shock unconditional stimulus (US) may be provided by climbing fibres to HVI and light and white noise conditional stimulus (CS) information may be supplied by pontine mossy fibres.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Albus JS (1971) A theory of cerebellar function. Math Biosci 10: 25–61

    Google Scholar 

  • Altman J, Carpenter MB (1961) Fiber connections of the superior colliculus of the cat. J Comp Neurol 116: 157–178

    Google Scholar 

  • Armstrong DM, Harvey RJ, Schild RF (1974) Topographical localization in the olivocerebellar projection: an electrophy-siological study in the cat. J Comp Neurol 154: 287–302

    Google Scholar 

  • Berkley KJ, Hand PJ (1978) Projections to the inferior olive of the cat. II. Comparisons of input from the gracile, cuneate and spinal trigeminal nuclei. J Comp Neurol 180: 253–264

    Google Scholar 

  • Bernard JF, Buisseret-Delmas C, Compoint C, Laplante S (1984) Harmaline induced tremor. III. A combined simple units, horseradish peroxidase, and 2-deoxyglucose study of the olivocerebellar system in the rat. Exp Brain Res 57: 128–137

    Google Scholar 

  • Brodal A (1939) Experimentelle Untersuchungen über retrograde Zellveränderungen in der unteren Olive nach Läsionen des Kleinhirns. Z Ges Neurol Psychiat 166: 622–704

    Google Scholar 

  • Brodal A (1940) Experimentelle Untersuchungen über die olivocerebellare Lokalisation. Z Ges Neurol Psychiat 169: 1–153

    Google Scholar 

  • Brodal A, Jansen J (1946) The ponto-cerebellar projection in the rabbit and cat. Experimental investigations. J Comp Neurol 84: 31–118

    Google Scholar 

  • Brodal A, Kawamura K (1980) Olivocerebelar projection: a review. Adv Anat Embryol Cell biol 64: 1–140

    Google Scholar 

  • Buchtel HA, Iosif G, Marchesi GF, Provini L, Strata P (1972) Analysis of activity evoked in cerebellar cortex by stimulation of the visual pathways. Exp Brain Res 15: 278–288

    Google Scholar 

  • Campbell NC, Armstrong DM (1983) Topographic localization in the olivocerebellar projection in the rat: an autoradiographic study. Brain Res 275: 235–249

    Google Scholar 

  • Clark GA, McCormick DA, Lavond DG, Thompson RF (1984) Effects of lesions of cerebellar nuclei on conditioned behavioural and hippocampal neuronal responses. Brain Res 291: 125–136

    Google Scholar 

  • Courville J (1975) Distribution of olivocerebellar fibers demonstrated by a radioautographic tracing method. Brain Res 95: 253–263

    Google Scholar 

  • Courville J, Augustine JR, Martel P (1977) Projections from the inferior olive to the cerebellar nuclei in the cat demonstrated by retrograde transport of horseradish peroxidase. Brain Res 130: 405–419

    Google Scholar 

  • Dietrichs E, Bjaalie JG, Brodal P (1983) Do pontocerebellar fibers send collaterals to the cerebellar nuclei? Brain Res 259: 127–131

    Google Scholar 

  • Disterhoft JF, Kwan HH, Lo WD (1977) Nictitating membrane conditioning to tone in the immobilized albino rabbit. Brain Res 137: 127–143

    Google Scholar 

  • Eccles JC, Ito M, Szentágothai J (1967) The cerebellum as a neuronal machine. Springer, Berlin

    Google Scholar 

  • Ekerot CF, Larson B (1979) The dorsal spino-olivocerebellar system in the cat. I. Functional organisation and termination in the anterior lobe. Exp Brain Res 36: 201–217

    Google Scholar 

  • Furber SE, Watson CR (1983) Organization of the olivocerebellar projection in the rat. Brain Behav Evol 22: 132–152

    Google Scholar 

  • Gellman R, Houk JC, Gibson AR (1983) Somatosensory properties of the inferior olive of the cat. J Comp Neurol 215: 228–243

    Google Scholar 

  • Gould BB (1980) Organisation of afferents from the brain stem nuclei to the cerebellar cortex in the cat. Adv Anat Embryol Cell Biol 62: 1–90

    Google Scholar 

  • Groenewegen HJ, Voogd J (1977) The parasagittal zonation within the olivocerebellar projection. I. Climbing fiber distribution in the vermis of cat cerebellum. J Comp Neurol 174: 417–488

    Google Scholar 

  • Groenewegen HJ, Voogd J, Freedman SL (1979) The parasagittal zonal organisation within the olivocerebellar projection. II. Climbing fiber distribution in the intermediate and hemispheric parts of cat cerebellum. J Comp Neurol 183: 551–602

    Google Scholar 

  • Holstege G, Collewijn H (1984) The efferent connections of the nucleus of the optic tract and the superior colliculus in the rabbit. J Comp Neurol 209: 139–175

    Google Scholar 

  • Ikeda M (1979) Projections from the spinal and the principal sensory nuclei of the trigeminal nerve to the cerebellar cortex in the cat, as studied by retrograde transport of horseradish peroxidase. J Comp Neurol 184: 567–586

    Google Scholar 

  • Ikeda M, Matsushita M (1974) Electronmicroscopic observations on the olivary projections to the cerebellar nuclei in the cat. Experientia 30: 536–538

    Google Scholar 

  • Ito M (1984) The cerebellum and neural control. Raven Press, New York, pp 268–271

    Google Scholar 

  • Kawamura K (1975) The pontine projection from the inferior colliculus in the cat. An experimental anatomical study. Brain Res 95: 309–322

    Google Scholar 

  • Kawamura K, Brodal A (1973) The tectopontine projection in the cat: an experimental anatomical study with comments on the pathways for teleceptive impulses to the cerebellum. J Comp Neurol 149: 371–390

    Google Scholar 

  • Kawamura K, Brodal A, Hoddevik G (1974) The projection of the superior colliculus onto the reticular formation of the brainstem: an experimental anatomical study in the cat. Exp Brain Res 19: 1–19

    Google Scholar 

  • Kotchabhakdi N, Walberg F, Brodal A (1978) The olivocerebellar projection in the cat studied with the method of retrograde transport of horseradish peroxidase. VII. The projection to lobulus simplex, crus I and crus II. J Comp Neurol 182: 293–314

    Google Scholar 

  • Linauts M, Martin GF (1978) The organisation of olivo-cerebellar projections in the opossum, Didelphis virginiana, as revealed by the retrograde transport of horseradish peroxidase. J Comp Neurol 179: 355–382

    Google Scholar 

  • Marr D (1969) A theory of cerebellar cortex. J Physiol (Lond) 202: 437–470

    Google Scholar 

  • Matsushita M, Ikeda M (1970) Olivary projections to the cerebellar nuclei in the cat. Exp Brain Res 10: 488–500

    Google Scholar 

  • Matsushita M, Ikeda M, Okado N (1982) The cells of origin of the trigeminothalamic, trigeminospinal and trigeminocerebellar projections in the cat. Neuroscience 7: 1439–1454

    Google Scholar 

  • McCormick DA, Thompson RF (1984) Cerebellum: essential involvement in the classically conditioned eyelid response. Science 223: 296–299

    Google Scholar 

  • McCrea RA, Bishop GA, Kitai ST (1977) Electrophysiological and horseradish peroxidase studies of precerebellar afferents to the nucleus interpositus anterior. II. Mossy fiber system. Brain Res 122: 215–228

    Google Scholar 

  • Meesen H, Olzewski J (1949) A cytoarchitectonic atlas of the rhombencephalon of the rabbit. S Karger, Basel

    Google Scholar 

  • Mesulam M-M (1982) Principles of horseradish peroxidase neurohistochemistry and their applications for tracing neural pathways — axonal transport, enzyme histochemistry and light microscopic analysis. In: Mesulam M-M (ed) Tracing neural connections with horseradish peroxidase. Wiley, Chichester, pp 1–151

    Google Scholar 

  • Miles TS, Wiesendanger M (1975a) Organisation of climbing fibre projections to the cerebellar cortex from trigeminal cutaneous afferents and from the SI face area of the cat. J Physiol (Lond) 245: 409–424

    Google Scholar 

  • Miles TS, Wiesendanger M (1975b) Climbing fibre inputs to cerebellar Purkinje cells from trigeminal cutaneous afferents and from the SI face area of the cerebral cortex in the cat. J Physiol (Lond) 245: 425–445

    Google Scholar 

  • Ono M, Kato H (1938) Zur Kenntnis von den Kleinhirnkernen des Kaninchens. Anat Anz 86: 245–259

    Google Scholar 

  • Oakley DA, Russell IS (1972) Neocortical lesions and Pavlovian conditioning in the rabbit. Physiol Behav 8: 915–926

    Google Scholar 

  • Oakley DA, Russell IS (1977) Subcortical storage of Pavlovian conditioning in the rabbit. Physiol Behav 18: 931–937

    Google Scholar 

  • Robinson FR, Cohen JL, May J, Sestokas AK, Glickstein M (1984) Cerebellar targets of visual pontine cells in the cat. J Comp Neurol 223: 471–482

    Google Scholar 

  • Rosina A, Provini L (1982) Longitudinal and topographical organisation of the olivary projection in the cat ansiform lobule. Neuroscience 7: 2657–2676

    Google Scholar 

  • Saint-Cyr JA, Courville J (1982) Descending projections to the inferior olive from the mesencephalon and superior colliculus in the cat. Exp Brain Res 45: 333–348

    Google Scholar 

  • Skelton RW, Donegan NH, Thompson RF (1984) Superior colliculus lesions disrupt classical conditioning to visual but not auditory stimuli. Soc Neurosci Abstr 10: 132

    Google Scholar 

  • Somana R, Kotchabhakdi N, Walberg F (1980) Cerebellar afferents from the trigeminal sensory nuclei in the cat. Exp Brain Res 38: 57–64

    Google Scholar 

  • Terasawa K, Otani K, Yamada J (1979) Descending pathways of the nucleus of the optic tract in the rat. Brain Res 173: 405–417

    Google Scholar 

  • Tsukahara N, Bando T, Murakami F, Oda Y (1983) Properties of cerebello-precerebellar reverberating circuits. Brain Res 274: 249–259

    Google Scholar 

  • van Rossum J (1969) Corticonuclear and corticovestibular projections of the cerebellum. Ph. D. thesis, University of Leiden

  • Voogd J (1969) The importance of fiber connections in the comparative anatomy of the mammalian cerebellum. In: Llinás R (ed) Neurobiology of cerebellar evolution and development. Am Med Assoc, Chicago, pp 493–514

    Google Scholar 

  • Voogd J (1983) Anatomical evidence for a cortical “X” zone in the cerebellum of the cat. Soc Neurosci Abstr 9: 1091

    Google Scholar 

  • Voogd J, Bigaré F (1980) Topographical distribution of olivary and corticonuclear fibers in the cerebellum: a review. In: Courville J, de Montigny C, Lamarre Y (eds) The inferior olivary nucleus. Raven Press, New York, pp 207–234

    Google Scholar 

  • Weber JT, Partlow GD, Harting JK (1978) The projection of the superior colliculus upon the inferior olivary complex of the cat: an autoradiographic and horseradish peroxidase study. Brain Res 144: 369–377

    Google Scholar 

  • Yeo CH, Hardiman MJ, Glickstein M (1984) Discrete lesions of the cerebellar cortex abolish the classically conditioned nictitating membrane response of the rabbit. Behav Brain Res 13: 261–266

    Google Scholar 

  • Yeo CH, Hardiman MJ, Glickstein M (1985a) Classical conditioning of the nictitating membrane response of the rabbit. I. Lesions of the cerebellar nuclei. Exp Brain Res 60: 87–98

    Google Scholar 

  • Yeo CH, Hardiman MJ, Glickstein M (1985b) Classical conditioning of the nictitating membrane response of the rabbit. II. Lesions of the cerebellar cortex. Exp Brain Res 60: 99–113

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yeo, C.H., Hardiman, M.J. & Glickstein, M. Classical conditioning of the nictitating membrane response of the rabbit. Exp Brain Res 60, 114–126 (1985). https://doi.org/10.1007/BF00237024

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00237024

Key words

Navigation