Skip to main content
Log in

A quantitative [14C]-2-deoxy-D-glucose study of brain stem nuclei during horizontal nystagmus induced by lesioning the lateral crista ampullaris of the rat

  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Summary

A study of the brainstem of the rat during horizontal nystagmus using the quantitative 2-deoxy-D-glucose technique reflected changes in the functional activity of cell groups based on their glucose utilization rates. Horizontal nystagmus was induced by unilateral crista ampullectomy of the horizontal canal. Comparisons of glucose utilization rates were made between experimental and control groups as well as from side to side within each group. There was a decrease of the ipsilateral medial and superior vestibular nuclei with a concomitant increase in the contralateral medial vestibular nucleus when compared to control. The medial rectus motor division of the ipsilateral oculomotor nucleus showed an increase whereas the ipsilateral abducens and the ipsilateral nucleus prepositus hypoglossi exhibited a decline in their utilization rates. The extra ocular motor nuclei responsible for the excitatory fast phase of nystagmus utilizes more substrate than those involved in the slow phase. An increase was also measured in the ipsilateral lobule of the cerebellar nodulus. The lateral reticular nucleus showed a bilateral decrease in its glucose utilization rate when compared to control.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Baker R, Berthoz A (1975) Is the prepositus hypoglossi nucleus the source of another vestibulo-ocular pathway? Brain Res 86: 121–127

    Google Scholar 

  • Baker R, Gresty M, Berthoz A (1976) Neuronal activity in the prepositus hypoglossi nucleus correlated with vertical and horizontal eye movements in the cat. Brain Res 101: 366–371

    Google Scholar 

  • Bienfang DC (1978) The course of direct projections from the abducens to the contralateral medial rectus subdivision of the oculomotor nucleus in the cat. Brain Res 145: 277–289

    Google Scholar 

  • Bryant HJ, Kutyna FA (1983) The development and evaluation of a low-cost microdensitometer for use with the 2-deoxy-D-glucose method of functional brain mapping. J Neurosci Methods 8: 61–72

    Google Scholar 

  • Büttner U, Henn V, Oswald HP (1977) Vestibular-related neuronal activity in the thalamus of the alert monkey during sinusoidal rotation in the dark. Exp Brain Res 30: 435–444

    Google Scholar 

  • Carlton SC, Carpenter MB (1983) Afferent and efferent connections of the medial, inferior and lateral vestibular nuclei in the cat and monkey. Brain Res 278: 29–51

    Google Scholar 

  • Cohen B (1974) The vestibulo-ocular reflex arc. In: Kornhuber HH (ed) Handbook of sensory physiology, Vol VI/1. Springer, Berlin, pp 477–540

    Google Scholar 

  • Conde F, Conde H (1978) Thalamic projections of the vestibular nuclei in the cat as revealed by retrograde transport of horseradish peroxidase. Neurosci Lett 9: 141–146

    Google Scholar 

  • Duncan DB (1955) Multiple range and multiple F. tests. Biometrics 11: 1–42

    Google Scholar 

  • Ferraro A, Pacella BL, Barreaa SE (1940) Effects of lesions of the medial vestibular nuclei. An anatomical and physiological study in macacus rhesus monkeys. J Comp Neurol 73: 7–36

    Google Scholar 

  • Fluur E (1959) Influences of semicircular ducts on extraocular muscles. Acta Otolaryngeal [Suppl] (Stockh) 149: 1–46

    Google Scholar 

  • Gacek RR (1977) Location of brain stem neurons projecting to the oculomotor nucleus in the cat. Exp Neurol 57: 725–749

    Article  CAS  PubMed  Google Scholar 

  • Gallager DW, Pert A (1978) Afferents to brain stem nuclei (brain stem raphe, nucleus reticularis pontis caudalis and nucleus gigantocellularis) in the rat as demonstrated by microiontophoretically applied horseradish peroxidase. Brain Res 144: 257–275

    Google Scholar 

  • Ghelanducci B, Pompeiano O, Skyer KM (1974) Macular input to precerebellar reticular neurons. Pflügers Arch Ges Physiol 346: 223–231

    Google Scholar 

  • Glicksman MA (1980) Localization of motoneurons controlling the extraocular muscles of the rat. Brain Res 188: 53–62

    Google Scholar 

  • Goldberg JM, Fernandez C (1971) Physiology of peripheral neurons innervating semicircular canals of the squirrel monkey. Resting discharge and response to constant angular accelerations. J Neurophysiol 34: 635–660

    Google Scholar 

  • Graybiel AM, Hartweig EA (1974) Some afferent connection of the oculomotor complex in the cat: an experimental study with tracer techniques. Brain Res 81: 543–551

    Google Scholar 

  • Highstein SM, Baker RG (1978) Excitatory termination of abducens internuclear neurons on medial rectus motoneurons: relationship to syndrome of internuclear ophthalmoplegia, J Neurophysiol 41: 1647–1661

    Google Scholar 

  • Hikosaka O, Kawakami T (1977) Inhibitory reticular neurons related to the quick phase of vestibular nystagmus — their location and projection. Exp Brain Res 27: 377–396

    Google Scholar 

  • Hikosaka O, Igusa Y, Imai H (1978) Firing pattern of prepositus hypoglossi and adjacent reticular neurons related to vestibular nystagmus in the cat. Brain Res 144: 395–403

    Google Scholar 

  • Hikosako O, Nakao S, Shimazu H (1980) Postsynaptic inhibition underlying spike suppression of secondary vestibular neurons during quick phases of vestibular nystagmus. Neurosci Lett 16: 21–26

    Google Scholar 

  • Igusa Y, Sasaki S, Shimazu H (1980) Excitatory premotor burse neurons in the cat pontine reticular formation related to quick phase of vestibular nystagmus. Brain Res 172: 451–456

    Google Scholar 

  • Ito M, Nishimaru N, Yamamoto M (1976a) Pathways for the vestibulo-ocular reflex excitation arising from semicircular canals of rabbits. Exp Brain Res 24: 257–271

    CAS  PubMed  Google Scholar 

  • Ito M, Nishimaru N, Yamamoto M (1976b) Postsynaptic inhibition of oculomotor neurons involved in vestibulo-ocular reflex arising from semicircular canals of rabbits. Exp Brain Res 24: 273–283

    Google Scholar 

  • Ito M, Shiida, T, Yagi N, Yamamoto M (1974) Visual influence rabbit horizontal vestibulo-ocular reflex presumably effected via the cerebellar flocculus. Brain Res 65: 170–174

    Google Scholar 

  • Ladpli R, Brodal A (1968) Experimental studies of commissural and reticular formation projections from the vestibular nuclei in the cat. Brain Res 8: 65–96

    Google Scholar 

  • Lang W, Büttner-Ennever JA, Büttner U (1979) Vestibular projections to the monkey thalamus: an autoradiographic study. Brain Res 177: 3–17

    Google Scholar 

  • Lang W, Kubik S (1979) Primary vestibular afferent projections to the ipsilateral abducens nucleus in cat. Exp Brain Res 37: 178–181

    Google Scholar 

  • Llinás R, Walton K (1979a) Place of the cerebellum in moror learning. In: Brazier MAB (ed): Brain mechanisms in memory and learning: from the single neuron to man. Raven Press, New York, pp 17–36

    Google Scholar 

  • Llinás R, Walton K (1979b) Vestibular compensation: A distributed property of central nervous system. In: Asanuma H, Wilson VJ (ed) Integration in the nervous system. A symposium in honor of DPC Lloyd and R Lorente de Nó. Igaku-Shoin, Tokio New York, pp 145–166

    Google Scholar 

  • Lorente de Nó R (1933) Vestibular-ocular reflex arc. Arch Neurol Psychiat 30: 245–291

    Google Scholar 

  • Maciewicz RJ, Eagen K, Kaneko CRS, Highstein SM (1977) Vestibular and medullary brain stem afferents to the abducens nucleus in the cat. Brain Res 123: 229–240

    Google Scholar 

  • Maeda M, Shimazu H, Shinoda Y (1972) Nature of synaptic events in cat abducens motoneurons at slow and quick phase of vestibular nystagmus. J Neurophysiol 35: 279–296

    Google Scholar 

  • Magnin M, Fuchs AF (1977) Discharge properties of neurons in the monkey thalamus tested with angular acceleration, eye movement and visual stimuli. Exp Brain Res 28: 293–299

    Google Scholar 

  • Markham CH, Yagi T, Curthoys IS (1977) The contribution of the contralateral labyrinth to second order vestibular neuronal activity in the cat. Brain Res 138: 99–109

    Google Scholar 

  • McMasters RE, Weiss AH, Carpenter MB (1966) Vestibular projections to the nucleus of extraocular muscles. Degeneration resulting from discrete partial lesions of the vestibular nuclei in the monkey. Am J Anat 118: 163–194

    Google Scholar 

  • Miles FA, Lisberger SG (1981) Plasticity in the vestibulo-ocular reflex: a new hypothesis. Ann Rev Neurosci 4: 273–299

    Google Scholar 

  • Nakao S, Sasaki S (1978) Firing pattern of interneurons in the abducens nucleus related to vestibular nystagmus in the cat. Brain Res 144: 389–394

    Google Scholar 

  • Nakao S, Sasaki S (1980) Excitatory input from interneurons in the abducens nucleus to medial rectus motor neurons mediating conjugate horizontal nystagmus in the cat. Exp Brain Res 39: 23–32

    Google Scholar 

  • Precht W, Shimazu H, Markham CH (1966) A mechanism of central compensation of vestibular function following hemilabyrinthectomy. J Neurophysiol 29: 996–1010

    Google Scholar 

  • Precht W, Cazin L (1979) Functional deficits in the optokinetic system in albino rats. Exp Brain Res 37: 183–186

    Google Scholar 

  • Precht W, Shimazu H (1965) Functional connections of tonic and kinetic vestibular neurons with primary vestibular afferents. J Neurophysiol 23: 1014–1028

    Google Scholar 

  • Precht W, Volkind R, Maeda M, Ginetti ML (1976) The effects of stimulating the cerebellar nodules in the cat on the responses of vestibular neurons. Neuroscience 1: 301–312

    Google Scholar 

  • Raymond J, Sans A, Marty R (1974) Projections thalamiques des noyaux vestibularies. Etude histologique chez le chat. Exp Brain Res 20: 273–293

    Google Scholar 

  • Reivich M, Jehle J, Sokoloff L, Kety SS (1969) Measurements of regional cerebral blood flow with antipyrine -[14C] in awake cats. J App Physiol 27: 296–300

    Google Scholar 

  • Rossi GF, Brodal A (1957) Terminal distribution of spinoreticular fibers in the cat. Arch Neurol Psychiat (Chic) 78: 439–453

    Google Scholar 

  • Sasaki S, Shimazu H (1981) Reticulovestibular organization participating in generation of horizontal fast eye movement. Ann NY Ac Sci 374: 130–143

    Google Scholar 

  • Shimazu H (1972) Vestibulo-oculomotor relations: dynamic responses. Prog Brain Res 37: 493–506

    Google Scholar 

  • Shimazu H, Precht W (1966) Inhibition of central vestibular neurons from the contralateral labyrinth and its mediating pathway. J Neurophysiol 29: 467–492

    Google Scholar 

  • Sokoloff L, Reivich M, Kennedy C, Des Rosiers MH, Patlak CS, Pettigrew KD, Sakurada O, Shinoharra M (1977) The [14C] deoxyglucose method for the measurement of local cerebral glucose utilization: theory, procedure, and normal values in conscious and anesthetized albino rat. J Neurochem 28: 897–916

    CAS  PubMed  Google Scholar 

  • Suzuki J-I, Cohen B (1964) Head, eye, body, and limb movements from semicircular canal nerves. Exp Neurol 10: 393–405

    Google Scholar 

  • Suzuki J-I, Cohen B, Bender MB (1964) Compensatory eye movements induced by ventrical semicircular canal stimulation. Exp Neurol 9: 137–160

    Google Scholar 

  • Szentágothai J (1950) The elementary vestibulo-ocular reflex arc. J Neurophysiol 13: 395–407

    PubMed  Google Scholar 

  • Uchino Y, Suzuki S, Miyazawa T, Watanabe S (1979) Horizontal canal input to cat extraocular motoneurons. Brain Res 177: 231–240

    Google Scholar 

  • Tarlov E (1970) Organization of the vestibulo-oculomotor projections in the cat. Brain Res 20: 159–179

    Google Scholar 

  • Waespe W, Buttner U, Henn V (1981) Visual-vestibular interactions in the flocculus of the alert monkey I. Exp Brain Res 43: 337–348

    Google Scholar 

  • Waespe W, Henn V (1981) Visual-vestibular interactions in the flocculus of the alert monkey. II. Purkinje cell activity. Exp Brain Res: 349–360

  • Winer BJ (1971) Statistical Principles in Experimental Design. McGraw Hill, New York, p 514–603

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Patrickson, J.W., Bryant, H.J., Kaderkaro, M. et al. A quantitative [14C]-2-deoxy-D-glucose study of brain stem nuclei during horizontal nystagmus induced by lesioning the lateral crista ampullaris of the rat. Exp Brain Res 60, 227–234 (1985). https://doi.org/10.1007/BF00235917

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00235917

Key words

Navigation