Skip to main content
Log in

Human gaze shifts in which head and eyes are not initially aligned

  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

Most studies of rapid orienting gaze shifts generated by combined eye and head movements have focused on an experimental condition in which gaze displacements are started with the subject's eyes in the normal straight-ahead position in the orbit. Such an experimental approach does not permit a clear identification of the input signal to the head motor system, because target offset angle is the same for both the eye and head. We have studied gaze shifts in human subjects which began with the visual axis straight ahead relative to the body (i.e., gaze or line of sight aligned with body sagittal plane) and with head offset from straight ahead at various angular positions. In our experimental conditions, the amplitude of head movement during a gaze shift was nearly equal to the angular distance between the target position and the starting head position (target-re-head), even though subjects were not specifically instructed to move their heads. This observation contrasts with other published reports in the literature showing considerable varibility amongst subjects in the amplitude of head rotation within a given task and between tasks. The difference may be related to the initial conditions which required subjects to align the eye and head on specific starting targets, since others have shown that requiring head alignment enhances head displacement. The amplitude of the saccadic eye movement was not determined by either the target's position relative to the starting eye or head positions. The value that best described the eye movement amplitude was the eye position in the orbit at the end of the saccade. This was nearly equal to target-rehead until a saturation eye position in the orbit was attained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Afanador AJ, Aitsebaomo AP (1982) The range of eye movements through progressive multifocals. Optomet Month 73:82–88

    Google Scholar 

  • Bard C, Fleury M, Paillard J (1992) Head orienting and aiming accuracy. In: Berthoz A, Graf W, Vidal P-P (eds) Head-neck sensory-motor system. Oxford University Press, New York, pp 582–586

    Google Scholar 

  • Barnes GR (1979) Vestibulo-ocular function during coordinated head and eye movements to acquire visual targets. J Physiol (Lond) 287:127–147

    Google Scholar 

  • Becker W, Jürgens R (1992) Gaze saccades to visual targets: does head movement change the metrics? In: Berthoz A, Graf W, Vidal P-P (eds) Head-neck sensory-motor system. Oxford University Press, New York, pp 427–433

    Google Scholar 

  • Biguer B, Prablanc C, Jeannerod M (1984) The contribution of coordinated eye and head movements in hand pointing accuracy. Exp Brain Res 55:462–469

    Google Scholar 

  • Bizzi E (1981) Eye-head coordination. In: Brooks VB (ed) Handbook of physiology, sect 1, vol II, The nervous system. American Physiological Society, Bethesda, MD, pp 1321–1336

    Google Scholar 

  • Delreux V, Vanden Abeele S, Lefevre P, Roucoux A (1991) Eye-head coordination: influence of eye position on the control of head movement amplitude. In: Paillard J (ed) Brain and space. Oxford University Press, New York, pp 38–48

    Google Scholar 

  • Fuller JH (1992a) Comparison of head movement strategies among mammals. In: Berthoz A, Graf W, Vidal P-P (eds) Head-neck sensory-motor system. Oxford University Press, New York, pp 101–112

    Google Scholar 

  • Fuller JH (1992b) Head movement propensity. Exp Brain Res 92:152–164

    Google Scholar 

  • Funk CJ, Anderson ME (1977) Saccadic eye movements and eyehead coordination in children. Percep Motor Skills 44:599–610

    Google Scholar 

  • Galiana HL, Guitton D (1992) Central organization and modelling of eye-head coordination during orienting gaze shifts. Ann NY Acad Sci 656:452–471

    Google Scholar 

  • Gresty MA (1974) Coordination of head and eye movements to fixate continuous and intermittent targets. Vision Res 14:395–403

    Google Scholar 

  • Guitton D (1992) Control of eye-head coordination during orienting gaze shifts. Trends Neurosci 15:174–179

    Article  CAS  PubMed  Google Scholar 

  • Guitton D, Volle M (1987) Gaze control in humans: eye-head coordination during orienting movements to targets within and beyond the oculomotor range. J Neurophysiol 58:427–459

    CAS  PubMed  Google Scholar 

  • Guitton D, Munoz DP, Galiana HL (1990) Gaze control in the cat. Studies and modelling of the coupling between eye and head movements in different behavioural tasks. J Neurophysiol 64:509–531

    Google Scholar 

  • Land MF (1992) Predictable eye-head coordination during driving. Nature 359:318–320

    Article  CAS  PubMed  Google Scholar 

  • Ron S, Berthoz A (1991) Eye and head coupled and dissociated movements during orientation to a double step visual target displacement. Exp Brain Res 85:196–207

    Google Scholar 

  • Tomlinson RD, Bahra PS (1986) Combined eye-head gaze shifts in the primate. I. Metrics. J Neurophysiol 56:1542–1557

    Google Scholar 

  • Volle M (1988) Contributions a l'etude des coordinations oculocephaliques chez l'homme et l'animal. PhD thesis, McGill University

  • Zangemeister WH, Stark L (1982a) Types of gaze movement: variable interactions of eye and head movements. Exp Neurol 77:563–577

    Google Scholar 

  • Zangemeister WH, Stark L (1982b) Gaze latency: variable interactions of head and eye latency. Exp Neurol 75:389–406

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Volle, M., Guitton, D. Human gaze shifts in which head and eyes are not initially aligned. Exp Brain Res 94, 463–470 (1993). https://doi.org/10.1007/BF00230204

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00230204

Key words

Navigation