Skip to main content
Log in

The control of wing kinematics by two steering muscles of the blowfly (Calliphora vicina)

  • Original Paper
  • Published:
Journal of Comparative Physiology A Aims and scope Submit manuscript

Abstract

We used a combination of high speed video and electrophysiological recordings to investigate the relationship between wing kinematics and the firing patterns of the first (b1) and second (b2) basalar muscles of tethered flying blowflies (Calliphora vicina). The b1 typically fires once during every wing stroke near the time of the dorsal stroke reversal. The b2 fires either intermittently or in bursts that may be elicited by a visual turning stimulus. Sustained activation of the b1 at rates near wing beat frequency appears necessary for the tonic maintenance of stroke amplitude. In addition, advances in the phase of b1 activation were correlated with both increased wing protraction during the down-stroke and increased stroke amplitude. Similar kinematic alterations were correlated with b2 spikes, and consequently, both muscles may function in the control of turns toward the contralateral side. The effects of the two muscles were evident within a single stroke period and decayed quickly. Kinematic changes correlated with b1 phase shifts were graded, suggesting a role in compensatory course stabilization. In contrast, b2 spikes were correlated with all-or-none changes in the wing stroke, a characteristic consistent with a role in mediating rapid turns towards or away from objects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

b1 :

first basalar muscle

b2 :

second basalar muscle

PWP :

pleural wing process

RS :

radial stop

S :

wing span ·

β:

angle between the stroke plane and the longitudinal body axis

Φ:

stroke amplitude

φ:

stroke elevation

L :

wing length

Ψb1 :

phase of b1 activation

Ψb2 :

phase of b2 activation

θ:

stroke deviation

References

  • Bergmann-Erb D, Heide G (1990) Kontraktionsmodus direkter Flugsteuermuskeln von Calliphora. Thieme, Stuttgart

    Google Scholar 

  • Dickinson MH (1994) The effects of wing rotation on unsteady aerodynamic performance at low Reynolds numbers. J Exp Biol 192: 179–206

    Google Scholar 

  • Dickinson MH, Götz KG (1993) Unsteady aerodynamic performance of model wings at low Reynolds numbers. J Exp Biol 174: 45–64

    Google Scholar 

  • Dickinson MH, Lehmann F-O, Götz KG (1993) The active control of wing rotation by Drosophila. J Exp Biol 182: 173–189

    Google Scholar 

  • Egelhaaf M (1989) Dynamic properties of two control systems underlying visually guided turning in house-flies. J Comp Physiol A 161: 777–783

    Google Scholar 

  • Ellington CP (1984) The aerodynamics of hovering insect flight III. Kinematics. Phil Trans R Soc Lond B 305: 41–78

    Google Scholar 

  • Ennos AR (1989) The kinematics and aerodynamics of the free flight of some Diptera. J Exp Biol 142: 49–85

    Google Scholar 

  • Ewing AW (1979a) The neuromuscular basis of courtship song in Drosophila: the role of direct and axillary wing muscles. J Comp Physiol 130: 87–93

    Google Scholar 

  • Ewing AW (1979b) The role of feedback during singing and flight in Drosophila melanogaster. Physiol Entomol 4: 329–337

    Google Scholar 

  • Fayyazuddin A, Chan WP, Jordan CE, Dickinson MH (1994) The role of haltere afferents in the activity of a steering muscle in the blowfly, Calliphora vicina. Soc Neurosci Abstr 20: 1595

    Google Scholar 

  • Götz KG (1968) Flight control in Drosophila by visual perception of motion. Kybernetik 4: 199–208

    Google Scholar 

  • Götz KG (1983) Bewegungssehen und Flugsteuerung bei der Fliege Drosophila. In: Nachtigall W (ed) BIONA- report 2. Fischer, Stuttgart, pp 21–34

    Google Scholar 

  • Götz KG (1987) Course-control, metabolism and wing interference during ultralong tethered flight in Drosophila melanogaster. J Exp Biol 128: 35–46

    Google Scholar 

  • Grodinsky DL, Morozov PP (1993) Vortex formation during tethered flight of functionally and morphologically two-winged insects, including evolutionary considerations on insect flight. J Exp Biol 182: 11–40

    Google Scholar 

  • Heide G (1968) Flugsteuerung durch nicht-fibrilläre Flugmuskeln bei der Schmeißfliege Calliphora. Z Vergl Physiol 59: 456–460

    Google Scholar 

  • Heide G (1971a) Die Funktion der nicht-fibrillären Flugmuskeln bei der Schmeißfliege Calliphora. Teil I: Lage, Insertionsstellen und Innervierungsmuster der Muskeln. Zool Jb Physiol 76: 87–98

    Google Scholar 

  • Heide G (1971b) Die Funktion der nicht-fibrillären Flugmuskeln bei der Schmeißfliege Calliphora. Teil II: Muskuläre Mechanismen der Flugsteuerung und ihre nervöse Kontrolle. Zool Jb Physiol 76: 99–137

    Google Scholar 

  • Heide G (1975) Properties of a motor output system involved in the optomotor response in flies. Biol Cybern 20: 99–112

    Google Scholar 

  • Heide G (1983) Neural mechanisms of flight contol in Diptera. In: Nachtigall W (ed) BIONA-report 2. Fischer, Stuttgart, pp 35–52

    Google Scholar 

  • Heisenberg M, Wolf R (1979) On the fine structure of yaw torque in visual flight orientation of Drosophila melanogaster. J Comp Physiol 130: 113–130

    Google Scholar 

  • Heisenberg M, Wolf R (1984) Vision in Drosophila. Springer, Berlin

    Google Scholar 

  • Hengstenberg R, Sandeman DC, Hengstenberg B (1986) Compensatory head roll in the blowfly Calliphora during flight. Proc R Soc Lond B 227: 455–482

    Google Scholar 

  • Hollick FSJ (1940) The flight of the dipterous fly Muscina sabulans Fallen. Phil Trans R Soc Lond B 230: 357–390

    Google Scholar 

  • Kutsch W, Hug W (1981) Dipteran flight motor pattern: Invariabilities and changes during postlarval development. J Neurobiol 12: 1–14

    Google Scholar 

  • Land MF, Collett TS (1974) Chasing behaviour of houseflies (Fannia canicularis). J Comp Physiol 89: 331–357

    Google Scholar 

  • Lehmann F-O (1990) Flugsteuerung bei der Fliege Drosophila: Elektrische Erregung des Sternobasalarmuskels in Abhängigkeit von der Flügelschlagphase. Diplomarbeit Universität Tübingen

  • Miyan JA, Ewing AW (1984) A wing synchronous receptor for the dipteran flight motor. J Insect Physiol 30: 567–574

    Google Scholar 

  • Miyan JA, Ewing AW (1985a) How Diptera move their wings: a re-examination of the wing base articulation and muscle systems concerned with flight. Phil Trans R Soc Lond B 311: 271–302

    Google Scholar 

  • Miyan JA, Ewing AW (1985b) Is the ‘click’ mechanism of dipteran flight an artifact of CCl4 anaesthesia? J Exp Biol 116: 313–322

    Google Scholar 

  • Miyan JA, Ewing AW (1988) Further observations on dipteran flight: details of the mechanism. J Exp Biol 136: 229–241

    Google Scholar 

  • Nachtigall W (1966) Die Kinematik der Schlagflügelbewegungen von Dipteren. Methodische und analytische Grundlagen zur Biophysik des Insektenflugs. Z Vergl Physiol 52: 155–211

    Google Scholar 

  • Nachtigall W (1981) Insect flight aerodynamics. In: Herreid CF II, Fourtner CR (eds) Locomotion and energetics in arthropods. Plenum, New York, pp 127–162

    Google Scholar 

  • Nachtigall W, Roth W (1983) Correlations between stationary measurable parameters of wing movement and aerodynamic force production in the blowfly (Calliphora vicina R.-D.). J Comp Physiol 150: 251–260

    Google Scholar 

  • Nachtigall W, Wilson DM (1967) Neuro-muscular control of dipteran flight. J Exp Biol 47: 77–97

    Google Scholar 

  • Nalbach G (1989) The gear change mechanism of the blowfly (Calliphora erythrocephala) in tethered flight. J Comp Physiol A 165: 321–331

    Google Scholar 

  • Pfau HK (1987) Critical comments on a ‘novel’ mechanical model of dipteran flight' (Miyan & Ewing, 1958). J Exp Biol 128: 463–468

    Google Scholar 

  • Tu MS, Dickinson MH (1994) Modulation of negative work output from a steering muscle of the blowfly Calliphora vicina. J Exp Biol 192: 207–224

    Google Scholar 

  • Wagner H (1986a) Flight performance and visual control of flight of the free-flying housefly (Musca domestica L.) I. Organization of the flight motor. Phil Trans R Soc Lond B 312: 527–551

    Google Scholar 

  • Wagner H (1986b) Flight performance and visual control of flight of the free-flying housefly (Musca domestica L.) II. Pursuit of targerts. Phil Trans R Soc Lond B 312: 553–579

    Google Scholar 

  • Wagner H (1986c) Flight performance and visual control of flight of the free-flying housefly (Musca domestica L.) III. Interactions between angular movement induced by wide- and smallfield stimuli. Phil Trans R Soc Lond B 312: 581–595

    Google Scholar 

  • Wisser A (1988) Wing beat of Calliphora erythrocephala: turning axis and gearbox of the wing base (Insecta, Diptera). Zoomorphology 107: 359–369

    Google Scholar 

  • Wisser A, Nachtigall W (1984) Functional-morphological investigation on the flight muscles and their insertion points in the blowfly Calliphora erythrocephala (Insecta, Diptera). Zoomorphology 104: 188–195

    Google Scholar 

  • Wood J (1970) A study of the instantaneous air velocities in a plane behind the wings of certain Diptera flying in a wind tunnel. J Exp Biol 52: 17–25

    Google Scholar 

  • Zanker JM (1990a) The wing beat of Drosophila melanogaster I. Kinematics. Phil Trans R Soc Lond B 327: 1–18

    Google Scholar 

  • Zanker JM (1990b) The wing beat of Drosophila melanogaster III. Control. Phil Trans R Soc Lond B 327: 45–64

    Google Scholar 

  • Zanker JM, Götz KG (1990) The wing beat of Drosophila melanogaster II. Dynamics. Phil Trans R Soc Lond B 327: 19–44

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tu, M.S., Dickinson, M.H. The control of wing kinematics by two steering muscles of the blowfly (Calliphora vicina). J Comp Physiol A 178, 813–830 (1996). https://doi.org/10.1007/BF00225830

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00225830

Key words

Navigation