Skip to main content
Log in

Subcellular localization of calcium in the mouse hypophysis

I. Calcium distribution in the adeno- and neurohypophysis under normal conditions

  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Summary

Application of the K-pyroantimonate technique combined with glutaraldehydeosmium fixation results in a reproducible intracellular distribution of mineral precipitates in the mouse hypophysis. Control experiments—with chelators and electron probe microanalysis— reveal that these precipitates consist mainly of calcium.

Regularly present in the mitochondria, Ca also seems to be stored in the Golgi apparatus of the glandular cells and in the axoplasmic reticulum and the “synaptic” vesicles of the neurosecretory fibres. These structures thus appear able to control intracytoplasmic calcium movements. These observations agree with physiological data showing the existence of an intracellular Ca pool that can be mobilized by specific stimulation.

The presence of diffuse precipitates in the pituicytes, together with the existence of gap junctions between them, suggest that these cells regulate the ionic environment of the neurosecretory nerve fibres; in this way, they too might participate in neurohypophysial hormonal release.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Borle, A.: Calcium metabolism at the cellular level. Fed. Proc. 32, 1944–1950 (1973)

    Google Scholar 

  • Braatz, R., Komnick, H.: Histochemischer Nachweis eines Calcium-pumpenden Systems in Plasmodien von Schleimpilzen. Cytobiologie 2, 457–463 (1970)

    Google Scholar 

  • Bulgre, R. E.: Use of potassium pyroantimonate in the localization of Na ions in the rat kidney tissue. J. Cell Biol. 40, 79–94 (1969)

    Google Scholar 

  • Clark, M. A., Ackerman, G. A.: A histochemical evaluation of the pyroantimonate-osmium reaction. J. Histochem. Cytochem. 19, 727–737 (1971)

    Google Scholar 

  • Dellmann, H.-D., Stoeckel, M. E., Porte, A., Stutinsky, F.: Ultrastructure of the neurohypophysial glial cells following stalk transection in the rat. Experientia (in press)

  • Douglas, W. W.: Stimulus-secretion coupling: the concept and clues from chromaffin and other cells. Brit. J. Pharmacol. 34, 451–474 (1968)

    Google Scholar 

  • Douglas, W. W., Poisner, A. M.: Calcium movement in the neurohypophysis of the rat and its relation to the release of vasopressin. J. Physiol. (Lond.) 172, 19–30 (1964)

    Google Scholar 

  • Hartmann, J. F.: High sodium content of cortical astrocytes. Arch. Neurol. (Chic.) 15, 633–642 (1966)

    Google Scholar 

  • Herman, L., Sato, T., Hales, C. N.: The electron microscopic localization of cations to pancreatic islets of Langerhans and their possible role in insulin secretion. J. Ultrastruct. Res. 42, 298–311 (1973)

    Google Scholar 

  • Hillman, D. E., Llinás, R.: Calcium containing electron-dense structures in the axons of the squid giant synapse. J. Cell Biol. 61, 146–155 (1974)

    Google Scholar 

  • Katzman, R.: Electrolyte distribution in mammalian central nervous system: are glia high sodium cells? Neurology (Minneap.) 11, 27–36 (1961)

    Google Scholar 

  • Katzman, R., Wilson, C. E.: Extraction of lipids and lipid cations from frozen brain tissue. J. Neurochem. 7, 113–127 (1961)

    Google Scholar 

  • Kaye, G., Cole, J. D., Dunn, A.: Electron microscopy: sodium localization in normal and ouabain treated transporting cells. Science 150, 1167–1168 (1965)

    Google Scholar 

  • Klein, M. J., Stoeckel, M. E., Porte, A., Stutinsky, F.: Sur les modifications ultrastructurales des cellules neurosécrétoires hypothalamiques (noyaux SO et PV) chez le rat hypophysectomisé. C. R. Acad. Sci. (Paris) 270, 385–388 (1970)

    Google Scholar 

  • Koch, A., Banck, B., Neuman, B. L.: Ionic content of neuroglia. Exp. Neurol. 6, 186–200 (1962)

    Google Scholar 

  • Komnick, H., Komnick, U.: Elektronenmikroskopische Untersuchungen zur funktionellen Morphologie des Ionentransportes in der Salzdrüse von Larus argentatus. Z. Zellforsch. 60, 163–203 (1963)

    Google Scholar 

  • Lane, B. P.: Localization of products of ATP hydrolysis in mammalian smooth muscle cells. J. Cell Biol. 34, 713–720 (1967)

    Google Scholar 

  • Lazarewicz, J. W., Haljamäe, H., Hamberger, A.: Calcium metabolism in isolated brain cells and subcellular fractions. J. Neurochem. 2, 33–45 (1974)

    Google Scholar 

  • Legato, M. J., Langer, G. A.: The subcellular localization of calcium ions in mammalian myocardium. J. Cell Biol. 41, 401–423 (1969)

    Google Scholar 

  • Malaisse, W. J.: Insulin secretion: multifactorial regulation for a single process of release. Diabetologia 9, 167–173 (1973)

    Google Scholar 

  • Martoja, M.: Données histologiques et ultrastructurales sur le calcium thyroidien. Calcif. Tiss. Res. 14, 67–82 (1974)

    Google Scholar 

  • Milligan, J. V., Kraicer, J.: Physical characteristics of the Ca++ compartments associated with in vitro ACTH release. Endocrinology 94, 435–443 (1974)

    Google Scholar 

  • Nakazato, Y., Douglas, W. W.: Vasopressin release from the isolated neurohypophysis induced by a calcium ionophore, X-537 A. Nature (Lond.) 249, 479–481 (1974)

    Google Scholar 

  • Norström, A., Hansson, H. A.: Effects of colchicine on release of neurosecretory material from the posterior pituitary gland of the rat. Z. Zellforsch. 142, 443–464 (1973)

    Google Scholar 

  • Norström, A., Hansson, H. A., Sjöstrand, J.: Effects of colchicine on axonal transport and ultrastructure of the hypothalamo-neurohypophyseal system of the rat. Z. Zellforsch. 113, 271–293 (1971)

    Google Scholar 

  • Ochs, S.: Fast transport of materials in mammalian nerve fibers. Science 176, 252–260 (1972)

    Google Scholar 

  • Politoff, A. L., Rose, S., Pappas, G. D.: The calcium binding sites of synaptic vesicles of the frog sartorius neuromuscular junction. J. Cell Biol. 61, 818–822 (1974)

    Google Scholar 

  • Rasmussen, H.: Cell communication, calcium ion, and cyclic adenosine monophosphate. Science 170, 404–412 (1970)

    Google Scholar 

  • Revel, J. P., Karnovsky, M. J.: Hexagonal array of subunits in intercellular junctions of the mouse heart and liver. J. Cell Biol. 33 C7-C12 (1967)

    Google Scholar 

  • Rubin, R. P.: The role of calcium on the release of neurotransmitter substances and hormones. Pharmacol. Rev. 22, 389–428 (1970)

    Google Scholar 

  • Russel, J. T., Thorn, N. A.: Calcium and stimulus secretion coupling in the neurohypophysis. I. 45-Calcium transport and vasopressin release in slices from ox neurohypophyses stimulated electrically or by a high potassium concentration. Acta endocr. (Kbh.) 76, 449–470 (1974)

    Google Scholar 

  • Russel, J. T., Thorn, N. A.: Calcium and stimulus secretion coupling in the neurohypophysis. II. Effects of lanthanum, a verapamil analogue (D 600) and prenylamine on 45-calcium transport and vasopressin release in isolated rat neurohypophyses. Acta endocr. (Kbh.) 76, 471–487 (1974)

    Google Scholar 

  • Schäfer, H. J., Klöppel, G.: The significance of calcium in insulin secretion. Ultrastructural studies on identification and localization of calcium in activated and inactivated B cells of mice. Virchows Arch. Abt. A 362, 231–245 (1974)

    Google Scholar 

  • Siegesmund, K. A.: Sodium localization in the cerebellum. J. Anat. (Lond.) 105, 403–413 (1969)

    Google Scholar 

  • Stelzner, D. J.: The relationship between synaptic vesicles, Golgi apparatus, and smooth endoplasmic reticulum: A developmental study using the Zinc Iodide-osmium technique. Z. Zellforsch. 120, 332–345 (1971)

    Google Scholar 

  • Stoeckel, M. E., Hindelang-Gertner, C., Madarasz, B., Dellmann, H.-D., Porte, A.: Localisation de précipités minéraux, vraisemblablement calciques, par le pyroantimoniate de potassium dans l'appareil de Golgi de cellules adénohypophysaires chez le rat et la souris. C. R. Acad. Sci. (Paris), Sér. D 279, 819–822 (1974)

    Google Scholar 

  • Tandler, C. J., Libanati, C. M., Sanchis, C. A.: The intracellular localization of inorganic cations with potassium pyroantimonate. Electron microscope and microprobe analysis. J. Cell Biol. 45, 355–366 (1970)

    Google Scholar 

  • Villegas, J., Villegas, L., Villegas, R.: Sodium, potassium and chloride concentrations and axon of the squid nerve fiber. J. gen. Physiol. 49, 1–7 (1965)

    Google Scholar 

  • Yarom, R., Chandler, J. A.: Electron probe microanalysis of skeletal muscle. J. Histochem. Cytochem. 22, 147–154 (1974)

    Google Scholar 

  • Zadunaisky, J. A.: The location of sodium in the transverse tubules of skeletal muscle. J. Cell Biol. 31, C11-C16 (1966)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

We would like to thank Dr. J. Gullasch, Head of the Siemens Microanalysis and Scanning Microscopy Application Laboratory, Karlsruhe, to whom we are indebted for the electron probe microanalyses.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stoeckel, M.E., Hindelang-Gertner, C., Dellmann, H.D. et al. Subcellular localization of calcium in the mouse hypophysis. Cell Tissue Res. 157, 307–322 (1975). https://doi.org/10.1007/BF00225522

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00225522

Key words

Navigation