Skip to main content
Log in

Information processing in the femur-tibia control loop of stick insects

1. The response characteristics of two nonspiking interneurons result from parallel excitatory and inhibitory inputs

  • Original Paper
  • Published:
Journal of Comparative Physiology A Aims and scope Submit manuscript

Abstract

The complicated response characteristics of the identified nonspiking interneuron type E4 upon elongation stimuli to the femoral chordotonal organ (fCO) can be obtained by a computer simulation using the neuronal network simulator BioSim, if the following assumptions were introduced: (1) The interneurons receive direct excitatory input from position- and velocity-sensitive fCO afferents but also, in parallel delayed inhibition from the same velocity-sensitive afferents. (2) Position-sensitive afferents in part show adaptation with a rather long time-constant. A subsequent experimental analysis demonstrated that all these assumptions fit the reality: (1) Interneurons of type E4 receive direct excitatory input from fCO afferents. (2) Interneurons of type E4 are affected by velocity dependent delayed inhibitory inputs from the fCO. (3) The fCO does contain adapting position-sensitive sensory neurons, which have not been described before. The described principle of the information processing is also able to generate the response in interneurons of type E6 with less steep amplitude-velocity characteristic due to a different weighting of the direct excitation and delayed inhibition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

EPSP :

excitatory postsynaptic potential

FETi :

fast extensor tibiae motor neuron

fCO :

femoral chordotonal organ

FT-control loop :

femur-tibia control loop

IPSP :

inhibitory postsynaptic potential

SETi :

slow extensor tibiae motor neuron

References

  • Bässler U (1977) Sense organs in the femur of the stick insect and their relevance to the control of position of the femur-tibia joint. J Comp Physiol 121: 99–113

    Google Scholar 

  • Bässler U (1983a) Neural basis of elementary behavior in stick insects. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Bässler U (1983b) The neural basis of catalepsy in the stick insect Cuniculina impigra 3. Characteristics of the extensor motor neurons. Biol Cybern 46: 159–165

    Google Scholar 

  • Bässler U (1991) Irrtum und Erkenntnis. Fehlerquellen im Erkenntnisprozeß von Biologie und Medizin. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Bässler U (1993) The femur-tibia control system of stick insects a model system for the study of the neural basis of joint control. Brain Res Rev 18: 207–226

    Google Scholar 

  • Bässler U, Büschges A (1990) Interneurones participating in the ‘active reaction’ in stick insects. Biol Cybern 62: 529–538

    Google Scholar 

  • Bässler U, Storrer J (1980) The neural basis of the femur-tibiacontrol-system in the stick insect Carausius morosus. I. Motoneurons of the extensor-tibiae muscle. Biol Cybern 38: 107–114

    Google Scholar 

  • Bergdoll S, Grethe J, Koch UT, Andrick U (1991) Computer modeling of networks containing spiking and nonspiking neurons In: (Elsner N, Penzlin H (eds) Proceedings of the 19th Göttingen Neurobiological Conference. G. Thieme Stuttgart p 584

  • Burrows M (1989) Processing of mechanosensory signals in local reflex pathways of the locust. J Exp Biol 146: 209–227

    Google Scholar 

  • Burrows M, Laurent GJ, Field LH (1988) Proprioceptive inputs to nonspiking local interneurons contribute to local reflexes of a locust hindleg. J Neurosci 8: 3085–3093

    Google Scholar 

  • Büschges A (1989) Processing of sensory input from the femoral chordotonal organ by spiking interneurones of stick insects. J Exp Biol 144: 81–111

    Google Scholar 

  • Büschges A (1990) Non-spiking pathways in a joint-control loop of the stick insect Carausius morosus. J Exp Biol 151: 133–160

    Google Scholar 

  • Büschges A (1994) The physiology of sensory cells in the ventral scoloparium of the stick insect femoral chordotonal organ. J Exp Biol 189: 285–292

    Google Scholar 

  • Büschges A, Schmitz J (1991) Nonspiking pathways antagonize the resistance reflex in the thoraco-coxal joint of stick insects. J Neurobiol 22: 224–237

    Google Scholar 

  • Büschges A, Wolf H (1995) Nonspiking local interneurons in insect leg motor control. I. Common layout and species-specific response properties of femur-tibia joint control pathways in stick insect and locust. J Neurophysiol (in press)

  • Büschges A, Kittmann R, Schmitz J (1994) Identified nonspiking interneurons in leg reflexes and during walking in the stick insect. J Comp Physiol A 174: 685–700

    Google Scholar 

  • Christensen TA, Waldrop BR, Harrow ID, Hildebrand JG (1993) Local interneurons and information processing in the olfactory glomeruli of the moth Manduca sexta. J Comp Physiol A 173: 385–399

    Google Scholar 

  • Driesang RB (1994) Mechanismen der Informationsverarbeitung im ZNS der Stabheuschrecke Carausius morosus. Dissertation, Universität Kaiserslautern

  • Driesang RB, Büschges A (1993a) The neural basis of catalepsy in the stick insect. IV. Properties of nonspiking interneurons. J Comp Physiol A 173: 445–454

    Google Scholar 

  • Driesang RB, Büschges A (1993b) Neural mechanisms underlying state dependent changes in the motor output of a joint control loop. In: Elsner N, Heisenberg M (eds) Proceedings of the 21st Göttingen Neurobiological Conference. G Thieme Stuttgart p 174

  • El Manira A, Cattaert D, Clarac F (1991) Monosynaptic connections mediate resistance reflexs in crayfish (Procambarus clarkii) walking legs. J Comp Physiol A 168: 337–349

    Google Scholar 

  • Grimm K, Sauer AE (1995) The high number of neurons contributes to the robustness of the locust flight-CPG against parameter variation. Biol Cybern 72: 329–335

    Google Scholar 

  • Hofman T, Koch UT (1985) Acceleration receptors in the fermoral chordotonal organ of the stick insect, Cuniculina impigra. J Exp Biol 114: 225–237

    Google Scholar 

  • Hofmann T, Koch UT, Bässler U (1985) Physiology of the femoral chordotonal organ in the stick insect, Cuniculina impigra. J Exp Biol 114: 207–223

    Google Scholar 

  • Koch UT, Brunner M (1988) A modular analog neuron-model for research and teaching. Biol Cybern 59: 303–312

    Google Scholar 

  • Kondoh Y, Newland PL (1992) Dynamics of a negative feedback loop underlying a resistance reflex of leg motor neurones in the locust. Proceedings of the Third International Congress of Neuroethology. Montreal, Quebec, Canada, p 117

  • Laurent G (1990) Voltage-dependent nonlinearities in the membrane of locust nonspiking interneurons and their significance for synaptic integration. J Neurosci 10: 2268–2280

    Google Scholar 

  • Lockery SR, Kristan WB Jr (1990a) Distributed processing of sensory information in the leech. II. Identification of interneurons contributing to the local bending reflex. J Neurosci 10: 1816–1829

    Google Scholar 

  • Lockery SR, Kristan WB Jr (1990b) Distributed processing of sensory information in the leech. I Input-output relations of the local bending reflex. J Neurosci 10: 1811–1815

    Google Scholar 

  • Matheson T (1992) Range fractionation in the locust metathoracic femoral chordotonal organ. J Comp Physiol A 170: 509–520

    Google Scholar 

  • Nagayama T, Hisada M (1987) Opposing parallel connections through crayfish local nonspiking interneurons. J Comp Neurol 257: 347–358

    Google Scholar 

  • Pearson KG (1993) Common principles of motor control in vertebrates and invertebrates. Annu Rev Neurosci 16: 265–297

    Google Scholar 

  • Pearson KG, Wong RKS, Fourtner CR (1976) Connexions between hair-plate afferents and motoneurones in the cockroach leg. J Exp Biol 64: 251–266

    Google Scholar 

  • Prochazka A (1989) Sensorimotor gain control: a basic strategy of motor systems? Progr Neurobiol 33: 281–307

    Google Scholar 

  • Robertson RM (1991) Delayed excitatory connections in the flight system of the locust. J Neurophysiol 65: 1150–1157

    Google Scholar 

  • Schmitz J, Delcomyn F, Büschges A (1991a) Oil and hook electrodes for en passant recording from small nerves. In: Conn PM (ed) Methods in neuroscience 4. Academic Press, San Diego New York Boston, 266–278

    Google Scholar 

  • Schmitz J, Dean J, Kittmann R (1991b) Central projections of leg sense organs in Carausius morosus (Insecta, Phasmida) Zoomorphology 111: 19–34

    Google Scholar 

  • Shepherd GM (1988) Neurobiology. Oxford University Press, New York

    Google Scholar 

  • Weidler DJ, Diecke FPJ (1969) The role of cation conduction in the central nervous system in herbivorous insect Carausius morosus. Z Vergl Physiol 64: 372–399

    Google Scholar 

  • Weiland G, Koch UT (1987) Sensory feedback during active movements of stick insects. J Exp Biol 133: 137–156

    Google Scholar 

  • Wendel O (1993) MOBIS — Ein wissensbasiertes Experimentiersystem zur Simulation biologisch orientierter neuronaler Netze. In: Hofestädt R, Krükerberg F, Lengauer T (eds) Informatik in den Biowissenschaften. Springer, Berlin, 203–213

    Google Scholar 

  • Wendel O, Sauer AE (1994) Automated generation and analysis of simulation experiments for biological neural networks. In: Elsner N, Breer H (eds) Proceedings of the 22nd Göttingen Neurobiological Conference. Thieme, Stuttgart p 865

    Google Scholar 

  • Wolf H, Büschges A (1995) Nonspiking local interneurons in insect leg motor control. II. The role of local nonspiking interneurons in the control of leg-swing during walking. J Neurophysiol (in press)

  • Wu J-Y, Cohen LB, Flax CX (1994) Neuronal activity during different behaviors in Aplysia: a distributed organization? Science 263: 820–823

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sauer, A.E., Driesang, R.B., Büschges, A. et al. Information processing in the femur-tibia control loop of stick insects. J Comp Physiol A 177, 145–158 (1995). https://doi.org/10.1007/BF00225095

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00225095

Key words

Navigation