Skip to main content
Log in

The use of microsatellite DNA markers for soybean genotype identification

  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Conventional morphological and pigementation traits, as well as disease resistance, have been used to distinguish the uniqueness of new soybean cultivars for purposes of plant variety protection. With increasing numbers of cultivars and a finite number of conventional characters, it has become apparent that such traits will not suffice to establish uniqueness. The objective of this work was to provide an initial evaluation of microsatellite or simple-sequence-repeat (SSR) DNA markers to develop unique DNA profiles of soybean genotypes. Microsatellites are DNA sequences such as (AT) n /(TA) n and (ATT) n /(TAA) n that are composed of tandemly repeated 2–5-basepair DNA core sequences. The DNA sequences flanking microsatellites are generally conserved allowing the selection of polymerase chain reaction (PCR) primers that will amplify the intervening SSR. Variation in the number of tandem repeats, “n”, results in PCR product length differences. The SSR alleles present at three (AT) n /(TA) n and four (ATT) n /(TAA) n loci were determined in each of 96 diverse soybean genotypes. Between 11 and 26 alleles were found at each of the seven loci. Only two genotypes had identical SSR allelic profiles and these had very similar pedigrees. The gene diversity for the seven markers averaged 0.87 for all 96 genotypes and 0.74 for a subset of 26 North American cultivars. These are much higher than soybean gene diversity values obtained using RFLP markers, and are similar to the average values obtained for human microsatellite markers. SSR markers provide an excellent complement to the conventional markers that are currently used to characterize soybean genotypes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Akkaya MS, Bhagwat AA, Cregan PB (1992) Length polymorphisms of simple sequence repeat DNA in soybean. Genetics 132:1131–1139

    CAS  PubMed  Google Scholar 

  • Anderson JA, Churchill GA, Autrique JE, Tanksley SD, Sorrells ME (1993) Optimizing parental selection for genetic linkage maps. Genome 36:181–186

    CAS  Google Scholar 

  • Botstein D, White RL, Skolnick M, Davis RW (1980) Construction of a genetic linkage map in man using restriction fragment length polymorphisms. Am J Hum Genet 32:314–331

    CAS  PubMed  Google Scholar 

  • Carter TE, Gizlice Z, Burton JW (1993) Coefficient-of-parentage and genetic-similarity estimates for 258 North American soybean cultivars released by public agencies during 1945–1988. USDA, Tech Bull No 1814

  • Cregan PB, Akkaya MS, Bhagwat AA, Lavi U, Jiang Rongwen (1994) Length polymorphisms of simple sequence repeat (SSR) DNA as molecular markers in plants. In: Gresshoff PM (ed) Plant genome analysis. CRC Press, Boca Raton, Florida, pp 43–49

    Google Scholar 

  • Edwards A, Civitello A, Hammond HA, Caskey CT (1991) DNA typing and genetic mapping with trimeric and tetrameric tandem repeats. Am J Hum Genet 49:746–756

    Google Scholar 

  • Keim P, Shoemaker RC, Palmer RG (1989) Restriction fragment length polymorphism diversity in soybean. Theor Appl Genet 77:786–792

    Google Scholar 

  • Keim P, Beavis W, Schupp J, Freestone R (1992) Evaluation of soybean RFLP marker diversity in adapted germ plasm. Theor Appl Genet 85:205–212

    Google Scholar 

  • NIH/CEPH Collaborative Mapping Group (1992) A comprehensive genetic linkage map of the human genome. Science 258:67–86

    Google Scholar 

  • Rostas K, Kondorosi E, Horvath B, Simoncsits A, Kondorosi A (1986) Conservation of extended promoter regions of nodulation genes in Rhizobium. Proc Natl Acad Sci USA 83:1757–1761

    Google Scholar 

  • Saghai-Maroof MA, Soliman KM, Jorgensen RA, Allard RW (1984) Ribosomal DNA spacer length polymorphisms in barley: Mendelian inheritance, chromosomal location, and population dynamics. Proc Natl Acad Sci USA 81:8014–8019

    PubMed  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York

    Google Scholar 

  • Soller M, Beckmann JS (1983) Genetic polymorphism in varietal identification and genetic improvement. Theor Appl Genet 67:25–33

    Google Scholar 

  • Tautz D (1989) Hypervariability of simple sequences as a general source of polymorphic DNA markers. Nucleic Acids Res 17:6463–6471

    CAS  PubMed  Google Scholar 

  • Weber JK, May PE (1989) Abundant class of human DNA polymorphisms which can be typed using the polymerase chain reaction. Am J Hum Genet 44:388–397

    CAS  PubMed  Google Scholar 

  • Weir BS (1990) Genetic data analysis methods for discrete genetic data. Sinauer Assoc Inc Sunderland, Massachusetts, USA

    Google Scholar 

  • Weissenbach J, Gyapay G, Dib C, Vignal A, Morissette J, Millasseau P, Vaysseix G, Lathrop M (1992) A second-generation linkage map of the human genome. Nature 359:794–801

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by A. L. Kahler

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rongwen, J., Akkaya, M.S., Bhagwat, A.A. et al. The use of microsatellite DNA markers for soybean genotype identification. Theoret. Appl. Genetics 90, 43–48 (1995). https://doi.org/10.1007/BF00220994

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00220994

Key words

Navigation