Skip to main content
Log in

Morphology and location of dense-core vesicles in the stomatogastric ganglion of the lobster, Panulirus interruptus

  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Summary

The appearance and distribution of dense-core vesicles in the stomatogastric ganglion of the spiny lobster, Panulirus interruptus, were examined using transmission electron microscopy. Following five fixation techniques, three types of dense-core vesicles were identified on the basis of size and morphology. Type-I vesicles are found in a distinct neuronal fiber system that appears to be involved in chemical transmission within the ganglion. Type-II vesicles occur in nerve processes in the ganglion, in major nerve trunks and in the perineural sheath of the nerves and ganglion. Type-III vesicles are present in all neuronal somata of the ganglion. The distinct morphology and location of the three types of vesicles suggest that their functional roles differ. Furthermore, the histochemical, biochemical and physiological data available for the Stomatogastric ganglion indicate that Type-I vesicles may store dopamine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Andrews, P.: Ultrastructural study of the pericardial organ-anterior ramifications complex neuro-secretory terminals. Z. Zellforsch. 144, 309–324 (1973)

    Google Scholar 

  • Ascher, P.: Inhibitory and excitatory effects of dopamine on Aplysia neurones. J. Physiol. (Lond.) 225, 173–209 (1972)

    Google Scholar 

  • Barker, D.L., Hooper, N.K.: Synthesis of dopamine and octopamine in the crustacean stomatogastric nervous system. Neurosci. Abstracts 1, 611 (1975)

    Google Scholar 

  • Barker, D.L., Kushner, P.D., Hooper, N.K.: In preparation (1976)

  • Bloom, F.E.: The fine structural localization of biogenic monoamines in nervous tissue. Int. Rev. Neurobiol. 13, 27–66 (1970)

    Google Scholar 

  • Bloom, F.E.: Ultrastructural identification of catecholamine-containing central synaptic terminals. J. Histochem. Cytochem. 21, 333–348 (1973)

    Google Scholar 

  • Bunt, A.H., Ashby, E.A.: Ultrastructure of sinus gland of crayfish Procambus clarkii. Gen. comp. Endocr. 9, 334–342 (1967)

    Google Scholar 

  • Cantino, D., Mugnaini, E.: Adrenergic innervation of the parasympathetic ciliary ganglion in the chick. Science 185, 279–281 (1974)

    Google Scholar 

  • Coggeshall, R.E.: Autoradiographic and chemical localization of 5-hydroxytryptamine in identified neurons in the leech. Anat. Rec. 172, 489–498 (1972)

    Google Scholar 

  • Cottrell, G.A.: Amines in molluscan nervous tissue and their subcellular localization. In: Symposium on Neurobiology of Invertebrates (J. Salanki ed.). Budapest: Plenum Press 1968

    Google Scholar 

  • Cottrell, G.A., Osborne, N.N.: Subcellular localization of serotonin in an identified serotonin-containing neurone. Nature (Lond.) 225, 470–472 (1970)

    Google Scholar 

  • Dando, M.R., Selverston, A.I.: Command fibers from the supra-oesophageal ganglion to the stomatogastric ganglion in Panulirus argus. J. comp. Physiol. 78, 138–175 (1972)

    Google Scholar 

  • Evans, P.D., Talamo, B.R., Kravitz, E.A.: Octopamine neurons: morphology, release of octopamine and possible physiological role. Brain Res. 90, 340–347 (1975)

    Google Scholar 

  • Fernandez, J., Fernandez, M.: Nervous system of the snail Helix aspersa. III. E.M. study of neurosecretory nerves and endings in the ganglionic sheath. Z. Zellforsch. 135, 473–482 (1972)

    Google Scholar 

  • Frazier, W.T., Kandel, E.R., Kupfermann, L, Waziri, R., and Coggeshall, R.E.: Morphological and functional properties of identified neurons in the abdominal ganglion of Aplysia californica. J. Neurophysiol. 30, 1288–1351 (1967)

    Google Scholar 

  • Friend, B., Kushner, P., Maynard, E.: Correlated studies of ultrastructure and fluorescence histochemistry in neurons of the crustacean stomatogastric system. J. Histochem. Cytochem. 23, 313 (Abstract) (1975)

    Google Scholar 

  • Friend, B., Maynard, E.: Structure and localization of dense core vesicles in the stomatogastric ganglion of the spiny lobster. Neurosci. Abstracts 1, 576 (1975)

    Google Scholar 

  • Froesch, D.: A simple method to estimate the true diameter of synaptic vesicles. J. Microsc. 98, 85–89 (1973)

    Google Scholar 

  • Geffen, L.B., Livett, B.G.: Synaptic vesicles in sympathetic neurons. Physiol. Rev. 51, 98–156 (1971)

    Google Scholar 

  • Geldiay, S., Edwards, J.S.: The protocerebral neurosecretory system and associated cerebral neurohemal area of Acheta domesticus. Z. Zellforsch. 145, 1–22 (1973)

    Google Scholar 

  • Gerschenfeld, H.M.: Chemical transmission in invertebrate central nervous systems and neuromuscular junctions. Physiol. Rev. 53, 1–119 (1973)

    Google Scholar 

  • Gillette, R., Pomeranz, B.: Ultrastructural correlates of interneuronal function in the abdominal ganglion of Aplysia californica. J. Neurobiol. 6, 463–474 (1975)

    Google Scholar 

  • Goldman, J.E., Schwartz, J.H.: Dense-core vesicles in the axon of the metacerebral cell, an identified serotonergic neuron of Aplysia, are labeled after intrasomatic injection of 3 H-serotomin Neurosci. Abstracts 1, 889 (1975)

    Google Scholar 

  • Hoyle, G., Barker, D.L.: Synthesis of octopamine by insect dorsal median unpaired neurons. J. exp. Zool. 193, 433–439 (1975)

    Google Scholar 

  • Hoyle, G., Dagan, D., Moberly, B., Colquhoun, W.: Dorsal unpaired median insect neurons make neurosecretory endings on skeletal muscle. J. exp. Zool. 187, 159–165 (1974)

    Google Scholar 

  • Karnovsky, M.J.: A formaldehyde-glutaraldehyde fixative of high osmolality for use in electron microscopy. J. Cell Biol. 27, 137A (1965)

  • King, D.G.: Organization of crustacean neuropil: I. Patterns of synaptic connections in lobster stomatogastric ganglion. J. Neurocytol. 5, 207–237 (1976 a)

    Google Scholar 

  • King, D.G.: Organization of crustacean neuropil: II. Distribution of synaptic contacts on identified motor neurons in lobster stomatogastric ganglion. J. Neurocytol. 5, 239–266 (1976 b)

    Google Scholar 

  • Krasne, F.B., Stirling, Ch.A.: Synapses of crayfish abdominal ganglia with special attention to afferent and efferent connections of the lateral giant fibers. Z. Zellforsch. 127, 526–544 (1972)

    Google Scholar 

  • Kushner, P.D., Maynard, E.: Monoamine histochemistry of the crustacean stomatogastric nervous system. Neurosci. Abstracts 1, 577 (1975)

    Google Scholar 

  • Kushner, P.D., Maynard, E.: Localization of monoamine fluorescence in the stomatogastric nervous system of lobsters. In preparation (1976)

  • Marder, E.: Acetylcholine as an excitatory neuromuscular transmitter in the stomatogastric system of the lobster. Nature (Lond.) 251, 730–731 (1974)

    Google Scholar 

  • Marder, E.: Cholinergic motor neurons in the stomatogastric system of the lobster. J. Physiol. (Lond.) 257, 63–86 (1976)

    Google Scholar 

  • Maser, M.D., Powell, T.E., Philpott, C.W.: Relationships among pH, osmolality, and concentration of fixative solutions. Stain Technol. 42, 175–182 (1967)

    Google Scholar 

  • Maynard, D.M.: Simpler networks. Ann. N.Y. Acad. Sci. 193, 59–72 (1972)

    Google Scholar 

  • Maynard, D.M., Dando, M.R.: The structure of the stomatogastric neuromuscular system in Callinectes sapidus, Homarus americanus and Panulirus argus (Decapoda Crustacea). Phil. Trans. B 268, 161–220 (1974)

    Google Scholar 

  • Maynard, D.M., Maynard, E.A.: Thoracic neurosecretory structures in Brachyura. III. Microanatomy of peripheral structures. Gen. comp. Endocr. 2, 12–28 (1962)

    Google Scholar 

  • Maynard, D.M., Selverston, A.I.: Organization of the stomatogastric ganglion of the spiny lobster. IV. The pyloric system. J. comp. Physiol. 100, 161–182 (1975)

    Google Scholar 

  • Maynard, D.M., Welsh, J.H.: Neurohormones of the pericardial organs of Brachyuran Crustacea. J. Physiol. (Lond.) 149, 215–227 (1959)

    Google Scholar 

  • Maynard, E.A.: Electron microscopy of stomatogastric ganglion in the lobster Homarus americanus. Tiss. and Cell 3, 137–160 (1971)

    Google Scholar 

  • Mollenhauer, H.H.: Plastic embedding mixture for use in electron microscopy. Stain Technol. 39, 111–114 (1964)

    Google Scholar 

  • Mulloney, B., Selverston, A.I.: Organization of the stomatogastric ganglion in the spiny lobster. I. Neurons driving the lateral teeth. J. comp. Physiol. 91, 1–32 (1974 a)

    Google Scholar 

  • Mulloney, B., Selverston, A.I.: Organization of the stomatogastric ganglion in the spiny lobster. III. Coordination of the two subsets of the gastric system. J. comp. Physiol. 91, 53–78 (1974 b)

    Google Scholar 

  • Myers, P.R.: Dopamine: localization of uptake in the pedal ganglion of Quadrula pustulosa (Pelecypoda). Tiss. and Cell 6, 49–64 (1974)

    Google Scholar 

  • Osborne, N.N., Dando, M.R.: Monoamines in the stomatogastric ganglion of the lobster Homarus vulgaris. Comp. Biochem. Physiol. 32, 327–331 (1970)

    Google Scholar 

  • Peters, A., Palay, S., Webster, H.: The fine structure of the nervous system. New York: Harper and Row 1970

    Google Scholar 

  • Reynolds, E.S.: The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. J. Cell Biol. 17, 208–212 (1963)

    Google Scholar 

  • Rude, S., Coggeshall, R.E., Van Orden, L.S.: Chemical and ultrastructural identification of 5-hydroxytryptamine in an identified neuron. J. Cell Biol. 41, 832–854 (1969)

    Google Scholar 

  • Russell, D.F.: Rhythmic excitatory inputs to the lobster stomatogastric ganglion. Brain Res. 101, 582–588 (1976)

    Google Scholar 

  • Selverston, A.I., Mulloney, B.: Organization of the stomatogastric ganglion in the spiny lobster. II. Neurons driving the medial tooth. J. comp. Physiol. 91, 33–51 (1974)

    Google Scholar 

  • Selverston, A.I., Russell, D.F., Miller, J.P., King, D.G.: The stomatogastric nervous system: structure and function of a small neural network. Progr. Neurobiol., in press (1976)

  • Shivers, R.R.: Possible sites of release of neurosecretory granules in the sinus gland of the crayfish Orconnectes nais. Z. Zellforsch. 97, 38–44 (1969)

    Google Scholar 

  • Silverthorn, S.U.: Neurosecretion in the sinus gland of the fiddler crab, Uca pugnax. Cell Tiss. Res. 165, 129–133 (1975)

    Google Scholar 

  • Sullivan, R.E., Barker, D.L.: Octopamine increases cyclic AMP content of crustacean ganglia and cardiac muscle. Neurosci. Abstracts 1, 610 (1975)

    Google Scholar 

  • Sullivan, R.E., Friend, B.J.: Neurosecretion: a proposed function for cardiac ligamental nerves and the dorsal nerve apparatus in the spiny lobster. In preparation (1976)

  • Terwilliger, R.C., Terwilliger, N.B., Clay, G., Belamarich, F.A.: The subcellular localization of cardioexcitatory peptide in the pericardial organs of the crab, Cancer borealis. Gen. comp. Endocr. 15, 70–79 (1970)

    Google Scholar 

  • Thompson, E.B., Kandel, E.R., Schwartz, J.H.: Axonal transport of vesicles: autoradiographic localization of 3H-glycoproteins in identified Aplysia axons after intrasomatic injections of 3H-fucose. Neurosci. Abstracts 1, 887 (1975)

    Google Scholar 

  • Trump, B.F., Smuckler, E.A., Benditt, E.P.: A method for staining epoxy sections for light microscopy. J. Ultrastruct. Res. 5, 343–348 (1961)

    Google Scholar 

  • Watson, M.L.: Staining of tissue for electron microscopy with heavy metals. J. biophys. biochem. Cytol. 4, 727–730 (1958)

    Google Scholar 

  • Weinreich, D., McCaman, M.W., McCaman, R.E., Vaughn, J.E.: Chemical, enzymatic and ultra-structural characterization of 5-HT containing neurones from ganglia of Aplysia californica and Tritonia diomedia. J. Neurochem. 20, 969–976 (1973)

    Google Scholar 

  • Weitzman, M.: Ultrastructural study of the release of neurosecretory material from the sinus gland of the land crab, Gecarcinus lateralis. Z. Zellforsch. 94, 147–154 (1969)

    Google Scholar 

  • Wood, J.G.: Electron microscope localization of amines in central nervous system. Nature (Lond.) 209, 1132–1133 (1966)

    Google Scholar 

  • Wood, J.G.: Cytochemical localization of 5-HT in the CNS. Anat. Rec. 157, 343 (1967)

    Google Scholar 

  • Wood, J.G.: Positive identification of intracellular biogenic amine reaction product with electron microscopic x-ray analysis. J. Histochem. Cytochem. 22, 1060–1063 (1974)

    Google Scholar 

  • Wood, J.G., Barrnett, R.J.: Histochemical demonstration of norepinephrine at a fine structural level. J. Histochem. Cytochem. 12, 197–209 (1964)

    Google Scholar 

  • Wood, J.G., Matthews, H.R.: Selective metal reactions for biogenic amines. J. Cell Biol. 59, 368a (1973)

  • Wood, J.G., Seelig, L.L., Benjamin, C.: Cytochemistry of epinephrine and norepinephrine adrenomedullary cells. Histochemie 28, 183–197 (1971)

    Google Scholar 

  • Zs.-Nagy, I.: Histochemical and electron microscopic studies on the relation between dopamine and dense core vesicles in the neurons of Anodonta cygnea L. In: Symposium on Neurobiology of Invertebrates (J. Salanki, ed.). Budapest: Plenum Press 1968

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Supported by USPHS grants NS-09614 and NS-09474 to Dr. E. Maynard, and submitted to the University of Oregon as partial fulfillment of the requirements for the degree of M.S. in Biology. I thank Dr. Edith Maynard for advice and support, Dr. David Barker for reading the manuscript, and Eric Schabtach and Harry Howard for assistance with microscopy

Rights and permissions

Reprints and permissions

About this article

Cite this article

Friend, B.J. Morphology and location of dense-core vesicles in the stomatogastric ganglion of the lobster, Panulirus interruptus . Cell Tissue Res. 175, 369–390 (1976). https://doi.org/10.1007/BF00218716

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00218716

Key words

Navigation