Skip to main content
Log in

Pattern of synaptic connections in the pineal organ of the ayu, Plecoglossus altivelis (Teleostei)

  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Summary

Synaptic connections were studied by means of electron microscopy in the sensory pineal organ of the ayu, Plecoglossus altivelis, a highly photosensitive teleost species. Three types of specific contacts were observed in the pineal end-vesicle: 1) symmetrically organized gap junctions between the basal processes of adjacent photoreceptor cells; 2) sensory synapses endowed with synaptic ribbons, formed by basal processes of photoreceptor cells and dendrites of pineal neurons; 3) conventional synapses between pineal neurons, containing both clear and dense-core vesicles at the presynaptic site. Based on these findings, the following interpretations are given: (i) The gap junctions may be involved in an enhancement of electric communication and signal encoding between pineal photoreceptor cells. (ii) The sensory synapses transmit photic signals from the photoreceptor cells to pineal nerve cells. (iii) The conventional synapses are assumed to be involved in a lateral interaction and/or summation of information in the sensory pineal organ. A concept of synaptic relationships among the sensory and neuronal elements in the pineal organ of the ayu is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Andrew RD, MacVicar BA, Dudek FE, Hatton GI (1981) Dye transfer through gap junctions between neuroendocrine cells of rat hypothalamus. Science 211:1187–1189

    Google Scholar 

  • Baylor DA, Fuortes MGF, O'Bryan PM (1971) Receptive fields of cones in the retina of the turtle. J Physiol 214:265–294

    Google Scholar 

  • Bayrhuber H (1972) Über die Synapsenformen und das Vorkommen von Acetylcholinesterase in der Epiphyse von Bombina variegata (L.), (Anura). Z Zellforsch 126:278–296

    Google Scholar 

  • Bennett MVL, Trinkaus JP (1970) Electrical coupling between embryonic cells by way of extracellular space and specialized junctions. J Cell Biol 44:592–609

    Google Scholar 

  • Bennett MVL, Aljure E, Nakajima Y, Pappas GD (1963) Electrotonic junctions between teleost spinal neurons: electrophysiology and ultrastructure. Science 141:262–264

    Google Scholar 

  • Bergmann G (1971) Elektronenmikroskopische Untersuchungen am Pinealorgan von Pterophyllum scalare Cuv et Val (Cichlidae, Teleostei). Z Zellforsch 119:257–288

    Google Scholar 

  • Bunt AH (1971) Enzymatic digestion of synaptic ribbons in amphibian retinal photoreceptors. Brain Res 25:571–577

    Google Scholar 

  • Collin JP, Oksche A (1981) Stuctural and functional relationships in the nonmammalian pineal gland. In: Reiter RJ (ed) The pineal organ Vol I Anatomy and Biochemistry. CRC, Boca Raton, pp 27–67

    Google Scholar 

  • Dowling JE (1968) Synaptic organization of the frog retina: an electron microscopic analysis comparing the retinas of frogs and primates. Proc R Soc Lond [Biol] 170:205–228

    Google Scholar 

  • Ekström P, van Veen T (1983) Central connections of the pineal organ in the three-spined stickleback, Gasterosteus aculeatus L. (Teleostei). Cell Tissue Res 232:141–155

    Google Scholar 

  • Eldred WD, Finger TE, Nolte J (1980) Central projections of the frontal organ of Rana pipiens, as demonstrated by the anterograde transport of horseradish peroxidase. Cell Tissue Res 211:215–222

    Google Scholar 

  • Falcon J (1979) L'organe pinéal du Brochet (Esox lucius, L.) I. Etude anatomique et cytologique. Ann Biol Anim Biochem Biophys 19:445–465

    Google Scholar 

  • Falcon J, Mocquard JP (1979) L'organe pinéal du Brochet (Esox lucius, L.) III. Voies intrapinéales de conduction des messages photosensoriels. Ann Biol Anim Biochem Biophys 19:1043–1061

    Google Scholar 

  • Foos RY, Miyamatsu W, Yamada E (1969) Tridimensional study of an anomalous synaptic ribbon in human retina. J Ultrastruct Res 26:391–398

    Google Scholar 

  • Friend DS, Gilula NB (1972) Variations in tight and gap junctions in mammalian tissues. J Cell Biol 53:758–776

    Google Scholar 

  • Gilula NB, Reeves OR, Steinbach A (1972) Metabolic coupling, ionic coupling and cell contacts. Nature 235:262–265

    Google Scholar 

  • Goodenough DA, Revel JP (1971) The permeability of isolated and in situ mouse hepatic gap junctions studied with enzymatic tracers. J Cell Biol 50:81–91

    Google Scholar 

  • Hafeez MA, Zerihun L (1974) Studies on central projections of the pineal nerve tract in rainbow trout, Salmo gairdneri Richardson using cobalt chloride iontophoresis. Cell Tissue Res 154:485–510

    Google Scholar 

  • Hanyu I, Niwa H (1970) Pineal photosensitivity in three teleosts, Salmo irideus, Plecoglossus altivelis and Mugil cephalus. Rev Can Biol 29:133–140

    Google Scholar 

  • Hanyu I, Niwa H, Tamura T (1978) Salient features in photosensory function of teleostean pineal organ. Comp Biochem Physiol A61:49–54

    Google Scholar 

  • Herwig HJ (1976) Comparative ultrastructural investigations of the pineal organ of the blind cave fish, Anoptichthys jordani, and its ancestor, the eyed river fish, Astyanax mexicanus. Cell Tissue Res 167:297–324

    Google Scholar 

  • Herwig HJ (1979) Morphological indications for endocrine activity in the pineal organ of teleost fishes. In: Kappers JA, Pévet P (eds) The pineal gland of vertebrates including man. Prog Brain Res Vol 52, Elsevier, Amsterdam, pp 213–217

    Google Scholar 

  • Herwig HJ (1981) The pineal organ. An ultrastructural and biochemical study on the pineal organ of Hemigrammus caudovittatus and other closely related characid fish species with special reference to the Mexican blind cave fish, Astyanax mexicanus. Thesis of Doctoral Degree, Rijksuniversity of Utrecht

  • Karasek M, King TS, Richardson BA, Hurlbut EC, Hansen JT, Reiter RJ (1982) Day-night differences in the number of pineal “synaptic” ribbons in two diurnal rodents, the chipmunk (Tamias striatus) and the ground squirrel (Spermophilus richardsonii). Cell Tissue Res 224:689–692

    Google Scholar 

  • Kelly DE, Smith SW (1964) Fine structure of the pineal organ of the adult frog, Rana pipiens. J Cell Biol 22:653–674

    Google Scholar 

  • Kemali M, Gugliemotti (1983) The connections of the frog interpeduncular nucleus (ITP) demonstrated by horseradish peroxidase (HRP). Exp Brain Res 45:349–356

    Google Scholar 

  • King TS, Dougherty WJ (1980) Neonatal development of circadian rhythm in “synaptic” ribbon numbers in the rat pinealocyte. Am J Anat 157:335–343

    Google Scholar 

  • Korf HW (1974) Acetylcholinesterase-positive neurons in the pineal and parapineal organs of the rainbow trout, Salmo gairdneri (with special reference to the pineal tract). Cell Tissue Res 155:475–489

    Google Scholar 

  • Korf HW, Wagner U (1981) Nervous connections of the parietal eye in adult Lacerta s. sicula Rafinesque as demonstrated by anterograde and retrograde transport of horseradish peroxidase. Cell Tissue Res 219:567–583

    Google Scholar 

  • Kurumado K, Mori W (1977) A morphological study of the circadian cycle of the pineal gland of the rat. Cell Tissue Res 182:565–568

    Google Scholar 

  • Lamb TD, Simon EJ (1976) The relation between intercellular coupling and electrical noise in turtle photoreceptors. J Physiol 263:257–286

    Google Scholar 

  • Matsushima S, Morisawa Y, Aida J, Abe K (1983) Circadian variations in pinealocytes of the Chinese hamster, Cricetulus griseus. A quantitative electron microscopic study. Cell Tissue Res 228:231–244

    Google Scholar 

  • Matsuura T, Herwig HJ (1981) Histochemical and ultrastructural study of the nervous elements in the pineal organ of the eel, Anguilla anguilla. Cell Tissue Res 216:545–555

    Google Scholar 

  • McNulty JA (1980) Ultrastructural observations on synaptic ribbons in the pineal organ of the goldfish. Cell Tissue Res 210:249–256

    Google Scholar 

  • McNulty JA (1981) Synaptic ribbons in the pineal organ of the goldfish: circadian rhythmicity and the effects of constant light and constant darkness. Cell Tissue Res 215:491–497

    Google Scholar 

  • Oguri M, Omura Y (1973) Ultrastructure and functional significance of the pineal organ of teleosts. In: Chavin W (ed) Responses of fish to environmental changes. Charles C Thomas, Springfield, pp 412–434

    Google Scholar 

  • Ohba S, Wake K, Ueck M (1979) Histochemical and electron microscopical findings in the pineal organ of Carassius gibelio (Landsd.). In: Kappers JA, Pévet P (eds) The pineal gland of vertebrates including man. Prog Brain Res Vol 52, Elsevier, Amsterdam, pp 93–96

    Google Scholar 

  • Oksche A (1971) Sensory and glandular elements of the pineal organ. In: Wolstenholme GEW, Knight J (eds) The pineal gland, Churchill Livingstone, Edingburgh London, pp 127–146

    Google Scholar 

  • Oksche A, Hartwig HG (1979) Pineal sense organs-components of photoneuroendocrine systems. In: Kappers JA, Pévet P (eds) The pineal gland of vertebrates including man. Prog Brain Res Vol 52, Elsevier, Amsterdam, pp 113–130

    Google Scholar 

  • Oksche A, Kirschstein H (1971) Weitere elektronenmikroskopische Untersuchungen am Pinealorgan von Phoxinus laevis (Teleostei, Cyprinidae). Z Zellforsch 112:572–588

    Google Scholar 

  • Oksche A, Vaupel-von Harnack M (1963) Elektronenmikroskopische Untersuchungen an der Epiphysis cerebri von Rana esculenta L. Z Zellforsch 59:582–614

    Google Scholar 

  • Omura Y (1975) Influence of light and darkness on the ultrastructure of the pineal organ in the blind cave fish, Astyanax mexicanus. Cell Tissue Res 160:99–112

    Google Scholar 

  • Omura Y (1979) Light and electron microscopic studies on the pineal tract of rainbow trout, Salmo gairdneri. Rev Can Biol 38:105–118

    Google Scholar 

  • Omura Y (1980) Histochemical and ultrastructural studies on the nervous organization of the pineal organ of the ayu, Plecoglossus altivelis. Bull Jpn Soc Sci Fish 46:1483–1488

    Google Scholar 

  • Omura Y, Ali MA (1980) Responses of pineal photoreceptors in the brook and rainbow trout. Cell Tissue Res 208:111–122

    Google Scholar 

  • Omura Y, Ali MA (1981) Ultrastructure of the pineal organ of the killifish, Fundulus heteroclitus, with special reference to the secretory function. Cell Tissue Res 219:355–369

    Google Scholar 

  • Omura Y, Ali MA (1982) Effect of hypophysectomy on the synaptic ribbons in the pineal organ of the killifish Fundulus heteroclitus. Bull Jpn Soc Sci Fish 48:1679–1684

    Google Scholar 

  • Omura Y, Oguri M (1971) The development and degeneration of the photoreceptor outer segment of the fish pineal organ. Bull Jpn Soc Sci Fish 37:851–860

    Google Scholar 

  • Omura Y, Kitoh J, Oguri M (1969) The photoreceptor cell of the pineal organ of Ayu, Plecoglossus altivelis. Bull Jpn Soc Sci Fish 35:1067–1071

    Google Scholar 

  • Osborne MP, Thornhill RA (1972) The effect of monoamine depleting drugs upon the synaptic bars in the inner ear of thebullfrog (Rana catesbeiana). Z Zellforsch 127:347–355

    Google Scholar 

  • Owman C, Rüdeberg C (1970) Light, fluorescence, and electron microscopic studies on the pineal organ of the pike, Esox lucius L., with special regard to 5-hydroxytryptamine. Z Zellforsch 107:522–550

    Google Scholar 

  • Paul E, Hartwig HG, Oksche A (1971) Neurone und zentralnervöse Verbindungen des Pinealorgans der Anuren. Z Zellforsch 112:466–493

    Google Scholar 

  • Raviola E, Gilula NB (1973) Gap junctions between photoreceptor cells in the vertebrate retina (membranes/electron microscopy/freeze-fracturing). Proc Natl Acad Sci USA 70:1677–1681

    Google Scholar 

  • Ribi WA (1978) Gap junctions coupling photoreceptor axons in the first optic ganglion of the fly. Cell Tissue Res 195:299–308

    Google Scholar 

  • Rüdeberg C (1969) Light and electron microscopic studies on the pineal organ of the dogfish, Scyliorhinus canicula L. Z Zellforsch 96:548–581

    Google Scholar 

  • Rüdeberg C (1971) Structure of the pineal organs of Anguilla anguilla L. and Lebistes reticulatus Peters (Teleostei). Z Zellforsch 122:227–243

    Google Scholar 

  • Shiraishi Y, Takeda T (1961) The influence of photoperiodicity on the maturation of Ayu-fish, Plecoglossus altivelis. Bull Freshwater Fish Res Lab 11:69–81

    Google Scholar 

  • Sjöstrand FS (1958) Ultrastructure of retinal rod synapses of the guinea pig eye as revealed by three dimensional reconstructions from serial sections. J Ultrastruct Res 2:122–170

    Google Scholar 

  • Smith CA, Sjöstrand FS (1961) A synaptic structure in the hair cells of the guinea-pig cochlea. J Ultrastruct Res 5:184–192

    Google Scholar 

  • Smith JG, Baumann F, Fuortes MGF (1965) Electrical connections between visual cells in the ommatidium of Limulus. Science 147:1446–1448

    Google Scholar 

  • Szamier RB, Wachtel AW (1970) Special cutaneous receptor organs of fish. VI. Ampullary and tuberous organs of Hypopomus. J Ultrastruct Res 30:450–471

    Google Scholar 

  • Takahashi H (1969) Light and electron microscopic studies on the pineal organ of the goldfish, Carassius auratus L. Bull Fac Fish Hokkaido Univ 20:143–157

    Google Scholar 

  • Theron JJ, Biagio R, Meyer AC (1981) Circadian changes in microtubules, synaptic ribbons and synaptic ribbon fields in the pinealocytes of the baboon (Papio ursinus). Cell Tissue Res 217:405–413

    Google Scholar 

  • Ueck M, Kobayashi H (1972) Vergleichende Untersuchungen über Acetylcholinesterase-haltige Neurone im Pinealorgan der Vögel. Z Zellforsch 129:140–160

    Google Scholar 

  • Vigh-Teichmann I, Korf HW, Oksche A, Vigh B (1982) Opsinimmunoreactive outer segments and acetylcholinesterase-positive neurons in the pineal complex of Phoxinus phoxinus (Teleostei, Cyprinidae). Cell Tissue Res 227:351–369

    Google Scholar 

  • Vollrath L (1973) Synaptic ribbons of a mammalian pineal gland. Circadian changes. Z Zellforsch 145:171–183

    Google Scholar 

  • Vollrath L (1981) The pineal organ. Handb Mikrosk Anat Mensch VI/7, Springer, Berlin Heidelberg New York

    Google Scholar 

  • Wake K (1973) Acetylcholinesterase-containing nerve cells and their distribution in the pineal organ of the goldfish, Carassius auratus. Z Zellforsch 145:287–198

    Google Scholar 

  • Wake K, Ueck M, Oksche A (1974) Acetylcholinesterase-containing nerve cells in the pineal complex and subcommissural area of the frogs, Rana ridibunda and Rana esculenta. Cell Tissue Res 154:423–442

    Google Scholar 

  • Witkovsky P, Dowling JE (1969) Synaptic relationships in the plexiform layers of carp retina. Z Zellforsch 100:60–82

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Fellow of the Alexander von Humboldt Foundation, Federal Republic of Germany

Rights and permissions

Reprints and permissions

About this article

Cite this article

Omura, Y. Pattern of synaptic connections in the pineal organ of the ayu, Plecoglossus altivelis (Teleostei). Cell Tissue Res. 236, 611–617 (1984). https://doi.org/10.1007/BF00217230

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00217230

Key words

Navigation