Skip to main content
Log in

Leg movement and hearing: biophysics and electrophysiology of the tympanal organ in Locusta migratoria

  • Original Paper
  • Published:
Journal of Comparative Physiology A Aims and scope Submit manuscript

Abstract

  1. 1.

    The oscillations of the tympanal membrane of Locusta migratoria were analysed by combined laser vibrometry and interferometry. Simultaneously the activity in the tympanal nerve was recorded extracellularly. The animal was stimulated by sound pulses and one of the hindlegs was passively moved in a sinusoidal manner simulating stridulation. These stimuli were applied separately and in combination.

  2. 2.

    Sound stimulation elicited high-frequency membrane oscillations, whereas leg movements induced slow rhythmic membrane displacements. During combined sound and movement stimulation these two types of oscillations superimposed without mutual interference.

  3. 3.

    The tympanal nerve responded to sound with well synchronized receptor activity. The leg movement elicited less synchronized, phase-coupled activity. During combined sound and movement stimulation the responses to the two types of stimuli interfered strongly.

  4. 4.

    The activity patterns of single receptor fibres and auditory interneurons were reanalysed from this point of view. The extent of synchronization of the receptors is found to be the major difference between the sound-induced and the movement-induced activation of the auditory system. A filter mechanism is postulated, consisting in the activation of some higher order auditory interneurons only by well-synchronized presynaptic activity, such as is induced by steeply rising sound pulses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adam LJ (1977a) The oscillatory summed action potential of an insect's auditory nerve (Locusta migratoria, Acrididae). I. Its original form and time constancy. Biol Cybern 26: 241–247

    Google Scholar 

  • Adam LJ (1977b) The oscillatory summed action potential of an insect's auditory nerve (Locusta migratoria, Acrididae). II. Underlying spike pattern and causes of spike synchronization. Biol Cybern 28: 109–119

    Google Scholar 

  • Boyan GS (1984) Neural mechanisms of auditory information processing by identified interneurons in Orthoptera. J Insect Physiol 30: 27–41

    Google Scholar 

  • Boyan GS (1986) Modulation of auditory responsiveness in the locust. J Comp Physiol A 158: 813–825

    Google Scholar 

  • Boyan GS, Fullard JH (1988) Information processing at a central synapse suggests a noise filter in the auditory pathway of the noctuid moth. J Comp Physiol A 164: 251–258

    Google Scholar 

  • Elsner N (1974) Neuroethology of sound production in gomphocerine grasshoppers. I. Song patterns and stridulatory movements. J Comp Physiol 88: 67–102

    Google Scholar 

  • Elsner N, Popov AV (1978) Neuroethology of acoustic communication. Adv Insect Physiol 13: 229–355

    Google Scholar 

  • Gray EG (1960) The fine structure of the insect ear. Phil Trans R Soc Lond B 243: 75–94

    Google Scholar 

  • Halex H, Kaiser W, Kalmring K (1988) Projection areas and branching patterns of tympanal receptor cells in migratory locusts, Locusta migratoria and Schistocerca gregaria. Cell Tissue Res 253: 517–528

    Google Scholar 

  • Hedwig B (1986) On the role in stridulation of plurisegmental interneurons of the acridid grasshopper Omocestus viridulus L. II. Anatomy and physiology of ascending and T-shaped interneurons. J Comp Physiol A 158: 429–444

    Google Scholar 

  • Hedwig B (1988) Activation and modulation of auditory receptors in Locusta migratoria by respiratory movements. J Comp Physiol A 162: 237–246

    Google Scholar 

  • Hedwig B (1989) Modulation of auditory responsiveness in tethered flying locusts. J Comp Physiol A 164: 409–422

    Google Scholar 

  • Hedwig B, Knepper M (1992) Neurolab, a comprehensive program for the analysis of neurophysiological and behavioural data. J Neurosci Meth 45: 135–148

    Google Scholar 

  • Hedwig B, Meyer J (1994) Auditory information processing in stridulating grasshoppers: tympanic membrane vibrations and neurophysiology. J Comp Physiol A 174: 121–131

    Google Scholar 

  • Hedwig B, Lang F, Elsner N (1988) The interference of sound and movement stimuli in tympanal receptors of Locusta migratoria J Comp Physiol A 163: 243–252

    Google Scholar 

  • Helversen D von (1993) ‘Absolute steepness’ of ramps as an essential cue for auditory pattern recognition by a grasshopper (Orthoptera; Acrididae; Chorthippus biguttulus L.) J Comp Physiol A 172: 633–639

    Google Scholar 

  • Helversen D von, Rheinlaender J (1988) Interaural intensity and time discrimination in an unrestrained grasshopper: a tentative approach. J Comp Physiol A 162: 333–340

    Google Scholar 

  • Helversen O von, Helversen D von (1988) Innate receiver mechanisms in the acoustic communication of orthopteran insects. In: Guthrie DM (ed) Aims and methods in neuroethology. Manchester University Press, pp 104–150

  • Huber F (1983) Der Weg vom Verhalten zur einzelnen Nervenzelle. Akad Wiss Lit. Steiner, Mainz Wiesbaden 3: 3–40

    Google Scholar 

  • Jacobs W (1953) Verhaltensbiologische Studien an Feldheuschrecken. Beiheft l zur Z Tierpsychol

  • Krahe R, Ronacher B (1993) Long rise times of sound pulses in grasshopper songs improve the directionality cues received by the CNS from the auditory receptors. J Comp Physiol A 173: 425–434

    Google Scholar 

  • Lang F (1985) Der Einfluß von Beinbewegungen auf das Verhalten akustischer Interneurone bei der Wanderheuschrecke Locusta migratoria L. Diplomarbeit Univ. Göttingen

  • Lang F (1989) Die Wahrnehmung und Verarbeitung von Schallsignalen unter dem Einfluß von Hinterbeinbewegungen bei der Wanderheuschrecke Locusta migratoria L. Dissertation Univ. Göttingen

  • Lang F, Elsner N (1989) The interference of sound and movement stimuli in auditory interneurons of Locusta migratoria L. J Comp Physiol A 164: 697–706

    Google Scholar 

  • Lang F, Brandt G, Glahe M (1993) A versatile multichannel acoustic stimulator controlled by a personal computer. In: Elsner N, Heisenberg M (eds) Gene — Brain — Behaviour: Proc 21st Göttingen Neurobiol Conf p 892

  • Marquart V (1985a) Auditorische Interneurone im thorakalen Nervensystem von Heuschrecken: Morphologie, Physiologie und synaptische Verbindungen. Dissertation Universität Bochum

  • Marquart V (1985b) Local interneurons mediating excitation and inhibition onto ascending neurons in the auditory pathway of grasshoppers. Naturwissenschaften 72: 42–44

    Google Scholar 

  • Meier T, Wolf H, Helversen O von (1987) “Auditory windows” for responsiveness during stridulation of grasshoppers recorded from one of their auditory interneurons. In: Elsner N, Creutzfeld O (eds) New frontiers in brain research: Proc 15th Göttingen Neurobiol Conf. Thieme, Stuttgart New York, p 85

    Google Scholar 

  • Meyer J (1992) Biophysikalische und elektrophysiologische Untersuchungen am Tympanalorgan larvaler und adulter Feldheuschrecken. Diplomarbeit Univ. Göttingen

  • Michelsen A (1971a) The physiology of the locust ear. I. Frequency sensitivity of single cells in the isolated ear. J Comp Physiol 71: 49–62

    Google Scholar 

  • Michelsen A (1971b) The physiology of the locust ear. II. Frequency discrimination based upon resonances in the tympanum. J Comp Physiol 71: 63–101

    Google Scholar 

  • Michelsen A (1971c) The physiology of the locust ear. III. Acoustical properties of the intact ear. J Comp Physiol 71: 102–128

    Google Scholar 

  • Michelsen A, Hedwig B, Elsner N (1990) Biophysical and neurophysiological effects of respiration on sound reception in the migratory locust Locusta migratoria. In: Gribakin FG, Wiese K, Popov AV (eds) Sensory systems and communication in arthropods. Birkhäuser, Basel Berlin, pp 199–203

    Google Scholar 

  • Pearson KG (1982–83) Neural circuits for jumping in the locust. J Physiol (Lond) 78: 756–771

    Google Scholar 

  • Rheinlaender J (1984) Das akustische Orientierungsverhalten von Heuschrecken, Grillen und Fröschen: Eine vergleichende neuro- und verhaltensphysiologische Untersuchung. Habilitationsschrift, Univ. Bochum

  • Robert D (1989) Auditory behaviour of flying locusts. J Exp Biol 147: 279–301

    Google Scholar 

  • Römer H (1976) Die Informationsverarbeitung tympanaler Rezeptorelemente von Locusta migratoria (Acrididae, Orthoptera). J Comp Physiol 109: 101–122

    Google Scholar 

  • Römer H (1985) Anatomical representation of frequency and intensity in the auditory system of Orthoptera. In: Kalmring K, Elsner N (eds.) Acoustic and vibrational communication in insects. Parey, Hamburg pp 25–32

    Google Scholar 

  • Römer H, Marquait V (1984) Morphology and physiology of auditory interneurons in the metathoracic ganglion of the locust. J Comp Physiol A 155: 249–262

    Google Scholar 

  • Ronacher B, Römer H (1985) Spike synchronization of tympanal receptor fibres in a grasshopper (Chorthippus biguttulus L., Acrididae): a possible mechanism for detecting short gaps in model songs. J Comp Physiol A 157: 631–642

    Google Scholar 

  • Ronacher B, Helversen D von, Helversen O von (1986) Routes and stations in the processing of auditory directional information in the CNS of a grasshopper, as revealed by surgical experiments. J Comp Physiol A 158: 363–374

    Google Scholar 

  • Stumpner A, Ronacher B (1991a) Auditory interneurons in the metathoracic ganglion of the grasshopper Chorthippus biguttulus. I. Morphological and physiological characterization. J Exp Biol 158: 391–410

    Google Scholar 

  • Stumpner A, Ronacher B (1991b) Auditory interneurons in the metathoracic ganglion of the grasshopper Chorthippus biguttulus. II. Processing of temporal pattern of the song of the male. J Exp Biol 158: 411–430

    Google Scholar 

  • Usherwood P N R, Grundfest H (1965) Peripheral inhibition in skeletal muscle of insects. J Neurophysiol 28: 497–518

    Google Scholar 

  • Völke A (1991) Laservibrometrie und elekrophysiologische Untersuchungen des Hörvermögens der Wanderheuschrecke während der Atmung. Diplomarbeit Univ. Göttingen

  • Wolf H, Helversen O von (1986) “Switching-off” an auditory interneuron during stridulation in the acridid grasshopper Chorthippus biguttulus L. J Comp Physiol A 158: 861–871

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lang, F., Elsner, N. Leg movement and hearing: biophysics and electrophysiology of the tympanal organ in Locusta migratoria . J Comp Physiol A 175, 251–260 (1994). https://doi.org/10.1007/BF00215120

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00215120

Key words

Navigation