Skip to main content
Log in

Functional and morphological regeneration of olfactory tracts and subtracts in goldfish

  • Published:
Journal of Comparative Physiology A Aims and scope Submit manuscript

Abstract

Goldfish are ideal vertebrates for the study of regeneration within the central nervous system. The present behavioural and neuroanatomical investigations after bilateral transection of the entire olfactory tracts of either lateral or medial subtracts have been designed (1) to examine the relationship between morphological changes and changes in the perception of spontaneously preferred chemosensory stimuli, (2) to investigate the animals' ability to qualitatively discriminate amino acids in olfactory concentrations (below taste threshold, 10-6–10-8 M), one of which had been rewarded preoperatively (“specific” regeneration), and (3) to examine the discriminative ability for amino acids at concentrations above taste threshold (> 10-5 M) in intact sham-operated, and in operated specimens at various time intervals before functional regeneration. Within 10–14 days after bilateral transection of the lateral olfactory tracts, specific regeneration was observed. After bilateral transection of the medial olfactory tracts, no immediate behavioural change was recorded for 1 week. Thereafter, goldfish behaviour became unstable and dropped to the chance level for 3–4 weeks. Subsequent to this time the goldfish returned to the preoperative level. Following bilateral crushing of the olfactory tracts and after total tractotomy, a specific regeneration was observed after 4 weeks and 6–8 weeks, respectively, post op. HRP studies showed that after bilateral lesioning a qualitative reinnervation of the respective nuclei within the forebrain by the medial and lateral olfactory subtracts was evident.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

FB:

funnel biting

FO:

funnel orientation

HRP:

horseradish peroxidase

LOT:

lateral olfactory tract

MOT:

medial olfactory tract

References

  • Bartheld CS von, Meyer DL, Fiebig E, Ebbesson SOE (1984) Central connections of the olfactory bulb in the goldfish, Carassius auratus. Cell Tissue Res 238:475–487

    Google Scholar 

  • Cohen AH, Mackler SA, Selzer ME (1988) Behavioral recovery following spinal transection: functional regeneration in the lamprey CNS. Trends Neurosci 11:227–231

    Google Scholar 

  • Das GD, Wallace RB (1986) Neural transplantation and regeneration. Proceedings in life sciences. Springer, New York Berlin Heidelberg

    Google Scholar 

  • Demski LS, Dulka JG (1984) Functional-anatomical studies on sperm release evoked by electrical stimulation of the olfactory tract in goldfish. Brain Res 291:241–247

    Google Scholar 

  • Farbman AI (1990) Olfactory neurogenesis: genetic or environmental controls? Trends Neurosci 13:362–366

    Google Scholar 

  • Flohr H (1988) Post-lesion neural plasticity. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Fujita I, Sorensen PW, Stacey NE, Hara TJ (1991) The olfactory system, not the terminal nerve, functions as the primary chemosensory pathway mediating responses to sex pheromones in male goldfish. Brain Behav Evol 38:313–321

    Google Scholar 

  • Hudson R, Distel H (1987) Regional autonomy in the peripheral processing of odor signals in newborn rabbits. Brain Res 421:85–94

    Google Scholar 

  • Hudson R, Distel H, Zippel HP (1990) Perceptual performance in peripherally reduced olfactory systems. In: Schild D (ed) Chemosensory information processing. NATO ASI Series, Springer, Berlin Heidelberg New York, pp 259–269

    Google Scholar 

  • Kirsche W, Kirsche K (1960) Experimentelle Untersuchungen zur Frage der Regeneration und Funktion des Tectum opticum von Carassius carassius L. Z Mikrosk Anat Forsch 67:141–182

    Google Scholar 

  • Kyle AL, Sorensen PW, Stacey NE, Dulka JG (1987) Medial olfactory tract pathways controlling sexual reflexes and behavior in teleosts. In: The terminal nerve (Nervus terminalis). Ann NY Acad Sci 519:97–107

  • Levine RL, Dethier S (1985) The connections between the olfactory bulb and the brain in the goldfish. J Comp Neurol 237:427–444

    Google Scholar 

  • Mackler SA, Yin HS, Selzer ME (1986) Determinants of directional specificity in the regeneration of lamprey spinal axons. J Neurosci 6:1814–1821

    Google Scholar 

  • Schmidt J (1988) Regeneration of the retinotectal projection in goldfish: selective stabilization of retinotopic synapses by correlated activity. In: Flohr H (ed) Post-lesion neural plasticity. Springer, Berlin Heidelberg New York, pp 499–508

    Google Scholar 

  • Selzer ME, Lurie D, Mackler SA (1988) Pathfinding and synaptic specificity of regenerating spinal axons in the lamprey. In: Flohr H (ed) Post-lesion neural plasticity. Springer, Berlin Heidelberg New York, pp 233–248

    Google Scholar 

  • Sorensen PW, Hara TJ, Stacey NE, Goetz FW (1988) F prostaglandins function as potent olfactory stimulants that comprise the postovulatory female sex pheromone in goldfish. Biol Reprod 39:1039–1050

    Google Scholar 

  • Sorensen PW, Hara TJ, Stacey NE, Dulka JG (1990) Extreme olfactory specificity of male goldfish to the preovulatory steroidal pheromone 17α, 20β-dihydroxy-4-pregnen-3-one. J Comp Physiol A 166:373–383

    Google Scholar 

  • Sorensen PW, Hara TJ, Stacey NE (1991) Sex pheromones selectively stimulate the medial olfactory tract of male goldfish. Brain Res 558:343–347

    Google Scholar 

  • Stacey NE, Kyle AL (1983) Effects of olfaction tract lesions on sexual and feeding behavior in the goldfish. Physiol Behav 30:621–628

    Google Scholar 

  • Stuermer CAO (1988) Path-and homefinding of regenerating retinal axons in goldfish. In: Flohr H (ed) Post-lesion neural plasticity. Springer, Berlin Heidelberg New York, pp 489–497

    Google Scholar 

  • Valentincic T, Caprio C (1992) Gustatory behavior of channel catfish to amino acids. In: Doty RL (ed) Chemical signals in vertebrates IV. Plenum Press, New York London (in press)

    Google Scholar 

  • Westerman RA (1965) Specificity in regeneration of optic and olfactory pathways in teleost fish. Stud Physiol 263–269

  • Westerman RA, Baumgarten R von (1964) Wiederherstellung der Riechfunktionen nach Tractus olfactorius-Durchschneidung beim Karpfen. Pflügers Arch 279:35

    Google Scholar 

  • Windle F (1955) Regeneration in the central nervous system. Charles C Thomas, Springfield, Illinois

    Google Scholar 

  • Zippel HP, Westerman RA (1970) Geruchsdifferezierungsvermögen der Karausche (Carassius carassius) nach funktioneller und histologischer Regeneration des Tractus olfactorius und der Commissura anterior. Z Vergl Physiol 69:38–53

    Google Scholar 

  • Zippel HP, von Baumgarten R, Westerman RA (1970) Histologische, funktionelle und spezifische Regeneration nach Durchtrennung der Fila olfactoria beim Goldfisch (Carassius auratus). Z Vergl Physiol 69:79–98

    Google Scholar 

  • Zippel HP, Breipohl W, Schoon H (1981) Functional and morphological changes in fish chemoreception systems following ablation of the olfactory bulbs. In: Flohr H, Precht W (eds) Lesion-induced neuronal plasticity in sensorimotor systems. Springer, Berlin Heidelberg New York, pp 377–394

    Google Scholar 

  • Zippel HP, Meyer DL, Knaust M (1988) Peripheral and central post-lesion plasticity in the olfactory system of the goldfish: behavior and morphology. In: Flohr H (ed) Post-lesion neural plasticity. Springer, Berlin Heidelberg New York, pp 577–591

    Google Scholar 

  • Zippel HP, Voigt R, Knaust M, Luan Y (1993) Spontaneous behavior, training and discrimination training in goldfish using chemosensory stimuli. J Comp Physiol A 172:81–90

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zippel, H.P., Hofmann, M., Meyer, D.L. et al. Functional and morphological regeneration of olfactory tracts and subtracts in goldfish. J Comp Physiol A 172, 91–99 (1993). https://doi.org/10.1007/BF00214718

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00214718

Key words

Navigation