Skip to main content
Log in

Single cell analysis of the expression of a nuclear protein, SCIP, by fluorescent immunohistochemistry visualized with confocal microscopy

  • Papers
  • Published:
The Histochemical Journal Aims and scope Submit manuscript

Summary

A widely applicable method for the accurate quantification or semiquantification of macromolecules at the level of individual cells is described and validated; this is a method which may considerably facilitate the study of many biological processes. This method relies on measuring fluorescent emission in immunocytochemically labelled cells with a confocal microscope. Emission is related quantitatively to the level of the fluorophore by the combination of an analysis of the polarization of the fluorescent emission and fluorophore ratioing methods. The method was applied to the study of the expression of the suppressed cyclic AMP-induced POU protein (SCIP) transcription factor in glial cells of the central nervous system. In particular, the method allowed the study of transcription factor expression in defined cells present in heterogeneous cultures and in cell types which cannot be isolated in sufficient numbers for biochemical analysis using conventional techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Albrechtsen, M., VonGerstenberg, A. C. & Bock, E. (1984) Mouse monoclonal antibodies reacting with human brain glial fibrillary acidic protein. J. Neurochem. 42, 86–92.

    Google Scholar 

  • Barer, M. R. & Entwistle, A. (1991) Confocal microscopy of surface and cytoplasmically labelled bacteria immobilised by APS-centrifugation. Lett. Appl. Microbiol. 13, 190–192.

    Google Scholar 

  • Benson, D. M., Bran, J., Plant, A. L., Gotto, A. M. Jr. & Smith, L. C. (1985) Digital imaging microscopy: spatial heterogeneity of photobleaching rate constants in individual cells. J. Cell Biol. 100, 1309–1323.

    Google Scholar 

  • Bignami, A., Eng, L. F., Dahl, D. & Uyeda, C. T. (1972) Localization of glial fibrillary acidic protein in astrocytes by immunofluorescence. Brain Res. 43, 429–435.

    Google Scholar 

  • Bögler, O. (1992) Studies on the control of differentiation of the oligodendrocyte-type-2 astrocyte progenitor cell. PhD thesis, University of London, Central Library.

  • Born, M. & Wolf, E. (1986) Principles of Optics, 6th corrected edn. Oxford: Pergamon Press.

    Google Scholar 

  • Bottenstein, J. E. & Sato, G. H. (1979) Growth of a rat neuroblastoma cell line in serum free supplemented medium. Proc. Natl Acad. Sci. USA 76, 4913–4917.

    Google Scholar 

  • Brakenhoff, G. J., Van DerVoort, H. T. M., VanSpronsen, E. A., Linnemans, W. A. M. & Nanninga, N. (1985) Three-dimensional chromatin distribution in neuroblastoma nuclei shown by confocal scanning laser microscopy. Nature 317, 748–749.

    Google Scholar 

  • Brockes, J. P., Fields, K. L. & Raff, M. C. (1979) Studies on cultured rat Schwann cells. I. Establishment of purified populations from cultures of peripheral nerve. Brain Res. 165, 105–118.

    Google Scholar 

  • Carlsson, K. (1991) The influence of specimen refractive index, detector signal integration and non-uniform scanning speed on the imaging properties in confocal microscopy. J. Microsc. 163, 167–178.

    Google Scholar 

  • Collarini, E. J., Kuhn, R., Marshall, C. J., Monuki, E. S., Lemke, G. & Richardson, W. D. (1992) Down-regulation of the POU transcription factor SCIP is an early event in oligodendrocyte differentiation in vitro. Development 116, 193–200.

    Google Scholar 

  • Dubois-Dalcq, M., Behar, T., Hudson, L. & Lazzarini, R. A. (1986) Emergence of three myelin proteins in oligodendrocytes cultured without neurons. J. Cell Biol. 102, 384–392.

    Google Scholar 

  • Eisenbarth, G. S., Walsh, F. S. & Nirenberg, M. (1979) Monoclonal antibody to plasma membrane antigen of neurons. Proc. Natl Acad. Sci. USA 76, 4913–4917.

    Google Scholar 

  • Entwistle, A. & Noble, M. (1990) The semi-quantitative measurement of nuclear SV-40 large-T antigen employing confocal microscopy. Trans. Roy. Microsc. Soc. 1, 405–408.

    Google Scholar 

  • Entwistle, A. & Noble, M. (1992a) The use of polarisation analysis in the quantification of fluorescent emission: general principles. J. Microsc. 165, 331–346.

    Google Scholar 

  • Entwistle, A. & Noble, M. (1992b) The quantification of fluorescent emission from biological samples using analysis of polarisation. J. Microsc. 165, 347–365.

    Google Scholar 

  • Entwistle, A. & Noble, M. (1992c) The use of Lucifer yellow, bodipy FITC, TRITC, RITC and Texas Red for dual immunofluorescence visualised with a laser scanning confocal microscope. J. Microsc. 168, 219–238.

    Google Scholar 

  • Entwistle, A., Hoffmann, H. H., Noble, M. & Stroobant, P. (1990) Measurement of the diffusion time of small molecules into cell aggregates using confocal microscopy. Trans. Roy. Microsc. Soc. 1, 361–364.

    Google Scholar 

  • Haugland, R. P. (1992) In Handbook of fluorescent Probes and Research Chemicals, 5th edn (edited by LarisonK. D.) Eugene, Oregon: Molecular Probes.

    Google Scholar 

  • Herr, W., Sturm, R. A., Clerc, R. G., Corcoran, L. M., Baltimore, D., Sharp, P. A., Ingraham, H. A., Rosenfeld, M. G., Finney, M., Ruvkun, G. & Horvitz, H. R. (1988) The POU-domain: a large conserved region in the mammalian pit-1, oct-1, oct-2, and Caenorhabditis elegans unc-86 gene products. Genes Dev. 2, 1513–1516.

    Google Scholar 

  • Johnson, G. D., Davidson, R. S., Mcnamee, K. G., Russel, G., Goodwin, D. & Holborow, E. J. (1982) Fading of immunofluorescence during microscopy: a study of the phenomena and its remedy. J. Immunol. Meth. 55, 231–242.

    Google Scholar 

  • Jongsma, A. P. M., Hijmans, W. & Ploem, J. S. (1971) Quantitative immunofluorescence and calibration in microfluorimetry. Histochemistry 25, 329–343.

    Google Scholar 

  • Kasten, F. H. (1989) The origins of modern fluorescence microscopy and fluorescent probes. In Cell Structure and Function by Microspectrofluorimetry (edited by Kohler, E. & Hirshenberg, J. G.). 1st edn. San Diego: Academic Press.

    Google Scholar 

  • Killander, D., Levin, A., Inoue, M. & Klein, E. (1970) Quantification of immunofluorescence on individual erythrocytes coated with varying amounts of antigen. Immunology 19, 151–156.

    Google Scholar 

  • Koppel, D. E., Carlson, C. & Smilowitz, H. (1989) Analysis of heterogeneous fluorescence photobleaching by video kinetics imaging: the method of cumulants. J. Microsoc. 155, 199–206.

    Google Scholar 

  • Kuhn, R., Monuki, E. S. & Lemke, G. (1991) The gene encoding the transcription factor SCIP has features of an expressing retrotransposon. Mol. Cell. Biol. 11, 4642–4650.

    Google Scholar 

  • Lillien, L. E., Sendtner, M., Rohrer, H., Hughes, S. M. & Raff, M. C. (1988) Type-2 astrocyte development in rat brain cultures is initiated by a CNTF-like protein produced by type-1 astrocytes. Neuron 1, 485–494.

    Google Scholar 

  • Mckay, I. C., Forman, D. & White, R. G. (1981) A comparison of fluorescein isocyanate and lissamine rhodamine (RB200) as labels for antibody in the fluorescent antibody technique. Immunol. 43, 591–602.

    Google Scholar 

  • Minsky, M. (1961) US patent 3013467: Microscopy apparatus. Filed 7th November 1957.

  • Monuki, E. S., Weinmaster, G., Kuhn, R. & Lemke, G. (1989). SCIP: a glial POU domain gene regulated by cycle AMP. Neuron 3, 783–93.

    Google Scholar 

  • Noble, M. & Murray, K. (1984) Purified astrocytes promote the in vitro division of a bipotential glial progenitor cell. EMBO J 3, 2243–2247.

    Google Scholar 

  • Osborn, A. D. & Porter, G. (1965) Diffusion studies in viscous media. Proc. Roy. Soc. Series A 284, 9–16.

    Google Scholar 

  • Pawley, J. B. (1990) Fundamental limits in confocal microscopy. In Handbook of Biological Confocal Microscopy, 1st revised edn (edited by Pawley, J. B.). New York: Plenum Press.

    Google Scholar 

  • Raff, M. C., Mirsky, R., Fields, K. L., Lisak, R. P., Dorfman, S. H., Silberberg, D. H., Gregson, N. A., Leibowitz, S. & Kennedy, M. C. (1978) Galactocerebroside is a specific cell-surface antigenic marker for oligodendrocytes in culture. Nature 274, 813–816.

    Google Scholar 

  • Raff, M. C., Miller, R. H. & Noble, M. D. (1983) A glial progenitor that develops in vitro into an astrocyte or an oligodendrocyte depending on culture medium. Nature 303, 390–396.

    Google Scholar 

  • Ranscht, B., Clapshaw, P. A., Price, J., Noble, M. & Seifert, W. (1982) Development of oligodendrocytes and Schwann cells studied with a monoclonal antibody against galactocerebroside. Proc. Natl Acad. Sci. USA 79, 2709–27013.

    Google Scholar 

  • Russ, J. C. (1990) Computer Assisted Microscopy, 1st edn. New York: Plenum Press.

    Google Scholar 

  • Ruvkun, G. & Guisto, J. (1989) The Caenorhabditis elegans heterochronic gene lin-14 encodes a nuclear protein that forms a temporal developmental switch. Nature 338, 313–319.

    Google Scholar 

  • Seamon, K. B. & Daly, J. W. (1986) Forskolin: its biological and chemical properties. Adv. Cyclic Nucleotide Protein Phosphoryl. Res. 20, 1–204.

    Google Scholar 

  • Shapiro, H. M. (1988) Practical Flow Cytometry 2nd edn. New York: A. R. Liss.

    Google Scholar 

  • Sheppard, C. R. J., Min, G. & Maitreyee, R. (1992) Signal to noise ratio in confocal microscope systems. J. Microsc. 168, 209–218.

    Google Scholar 

  • Small, R. K., Riddle, P., & Noble, M. (1987) Evidence for the migration of oligodendrocyte-type 2 astrocyte progenitor cells into the developing rat optic nerve. Nature 328, 155–157.

    Google Scholar 

  • Steltzer, E. H. K. & WijnaendtsVan Resantdt, R. W. (1987) Nondestructive sectioning of fixed and living specimen using a confocal scanning laser microscope: microtomoscopy. SPIE 809, 140–147.

    Google Scholar 

  • Tanke, H. J., VanOostvelt, P. & VanDuijn, P. (1982) A parameter for the distribution of fluorophores in cells derived from measurements of inner filter effect and reabsorption phenomina. Cytometry 2, 359–369.

    Google Scholar 

  • White, J. G., Amos, W. B. & Fordham, M. (1987) An evaluation of confocal versus conventional imaging of biological structures of fluorescence light microscopy. J. Cell Biol. 105, 41–48.

    Google Scholar 

  • Wilkinson, F. (1964) Electronic energy transfer between organic molecules in solution. Adv. Photochem. 3, 241–268.

    Google Scholar 

  • Wilson, T. & Sheppard, C. J. R. (1984) Theory and Practice of Scanning Optical Microscopy, 1st edn. London: Academic Press.

    Google Scholar 

  • Wolswijk, G. & Noble, M. (1989) Identification of an adult specific glial progenitor cell. Development 105, 387–400.

    Google Scholar 

  • Wolswijk, G. & Noble, M. (1992) Cooperation between PDGF and FGF converts slowly dividing O-2Aadult progenitor cells to rapidly dividing cells with characteristics of O-2Aperinatal progenitor cells. J. Cell Biol. 118, 889–900.

    Google Scholar 

  • Wren, D. & Noble, N. (1989) Oligodendrocytes and oligodendrocyte-type-2 astrocyte progenitor cells of adult rats are specifically susceptible to the lytic effects of complement in absence of antibody. Proc. Natl Acad. Sci. USA 86, 9025–9029.

    Google Scholar 

  • Wren, D., Wolswijk, G. & Noble, M. (1992) Development, differentiation and neoplasia in glial cells of the central nervous system. Ann. New York Acad. Sci. 633, 35–47.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bögler, O., Entwistle, A., Kuhn, R. et al. Single cell analysis of the expression of a nuclear protein, SCIP, by fluorescent immunohistochemistry visualized with confocal microscopy. Histochem J 25, 746–761 (1993). https://doi.org/10.1007/BF00211770

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00211770

Keywords

Navigation