Skip to main content
Log in

On the mechanisms of cation diffusion processes in ternary feldspars

  • Published:
Physics and Chemistry of Minerals Aims and scope Submit manuscript

Abstract

Cation diffusion processes have been studied in single crystals of intermediate plagioclase and albite composition by tracer-diffusion experiments and optical absorption spectroscopy. Tracer-diffusivities were determined by the residual activity method, using the radioactive isotopes 22Na, 45Ca and 59Fe. In most cases, diffusion experiments were performed at 1 bar, at controlled oxygen activity and at temperatures between 750 and 1300°C. The obtained Na-diffusivities for plagioclases were much smaller then previously determined for albite. This indicates a strong composition dependence of Na-diffusion. In contrast, Ca-diffusivity in albite does not differ very much from that in intermediate plagioclases. The relative diffusivities determined for plagioclase of composition An62 at 1200° C (CO/CO2 =50∶50) were D sup*infNa D sup*infFe D sup*infCa =5000∶10∶1. Despite the an isotropic structure of feldspars, no difference was found for Na-and Ca-diffusion normal to (001) and normal to (010). Water pressure of 2 kbar has no influence on the Na-diffusivity. In contrast to the Ca-diffusion, a dependence on oxyggen activity was found for Na-and Fe-diffusion. Fe-diffusivity increases with decreasing oxygen activity. This can be correlated to changes in oxidation state of iron dissolved in the plagioclases. Optical absorption spectroscopy shows that iron is oxidized in the plagioclases by annealing in air. This effect can be reversed by annealing at reducing conditions. A model is proposed to explain the oxidation of iron by a chemical diffusion process in which A-vacancies are formed by out-diffusion of Na+. Preannealing of samples in air gives a temperature independent decrease of Na-diffusivity by a factor of about 2.5. This effect is explained with help of a simple disorder model for A-cations in ternary feldspars. It is concluded that Na+ diffuses via interstitials and that the A-vacancy concentration in the plagioclases is controlled extrinsically, probably by dissolved SiO2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Annersten H (1976) New Mössbauer data on iron in potash feldspar. Neues Jahrb Mineral Monatsh 337–343

  • Appleman DE, Nissen HU, Stewart DB, Clark JR, Dowty E, Huebner JS (1971) Studies of lunar plagioclases, tridymite, and cristobalite. Geochim Cosmochim Acta Suppl 2:117–133

    Google Scholar 

  • Bardeen J, Herring C (1952) Diffusion in alloys and the Kirkendall effect. In Shockley W (ed) Imperfections in nearly perfect crystals. Wiley, New York, pp 261–288

    Google Scholar 

  • Beaty DW, Albee AL (1980) Silica solid solution and zoning in natural plagioclase. Am Mineral 65:63–74

    Google Scholar 

  • Behrens H (1988) Untersuchungen über Transportvorgänge in Plagioklasfeldspat (Einkristalle, Polykristalle und Gläser). Dissertation, Universität Hannover, Germany

    Google Scholar 

  • Bell PM, Mao HK (1973) Measurements of the polarized crystal field spectra of ferrous and ferric iron in seven terristal plagio-clases. Carnegie Inst Washington Year Book 72:574–576

    Google Scholar 

  • Beran A (1987) OH groups in nominally anhydrous framework structures: An infrared spectroscopic investigation of danburite and labradorite. Phys Chem Minerals 14:441–445

    Article  Google Scholar 

  • Bruno E, Facchinelli A (1974) Experimental studies on anorthite crystallization along the join CaAl2Si2O8-SiO2. Bull Soc Fr Minéral Cristallogr 97:422–432

    Google Scholar 

  • Carmen JH, Tuttle OF (1967) Experimental verification of solid solution of excess silica in sanidine from rhyolites. Ann Meet Geol Soc Am 33

  • Carpenter MA, McConnell JDC (1984) Experimental delineation of the 77–01 transformation in intermediate plagioclase feldspars. Am Mineral 69:112–121

    Google Scholar 

  • Chatterjee ND, Johannes W (1974) Thermal stability and standard thermodynamic properties of synthetic 2M1-muscovite, KAl2(AlSi3O10(OH)2). Contrib Mineral Petrol 48:89–114

    Article  Google Scholar 

  • Christoffersen R, Yund RA, Tullis J (1983) Inter-diffusion of K and Na in alkali feldspars: diffusion couple experiments. Am Mineral 68:1126–1133

    Google Scholar 

  • Crank J (1975) The mathematics of diffusion, 2nd edn. Oxford University Press, London, p 414

    Google Scholar 

  • Elphick SC, Graham CM, Dennis PR (1988) An ion microprobe study of anhydrous oxygen diffusion in anorthite: a comparison with hydrothermal data and some geological implications. Contrib Mineral Petrol 100:490–495

    Article  Google Scholar 

  • Foland KA (1974) Alkali diffusion in orthoclase. In: Hofmann AW, Giletti BJ, Yoder HS jr, Yund RA (eds) Geochemical transport and kinetics. Carnegie Inst, Washington 77–98

    Google Scholar 

  • Frischat GH, Oel HJ (1966) Eine Restaktivitätsmethode zur Be-stimmung von Selbstdiffusionskoeffizienten in Festkörpern. Z Angew Phys 20:195–201

    Google Scholar 

  • Gaite JM, Michoulier J (1970) Application de la résonance paramagnetic électronique de l'ion Fe3+ à l'étude de la structure des feldspaths. Bull Soc Fr Minéral Cristallogr 93:341–356

    Google Scholar 

  • Giletti BJ (1984) Tracer and self-diffusion of Rb, Sr and Pb in orthoclase feldspar, a new method. Geol Soc Am Abstr Progr 16:519

    Google Scholar 

  • Giletti BJ, Semet MP, Kasper RB (1974) Self-diffusion of potassium in low-albite using an ion microprobe. Geol Soc Am Abstr Progr 6:754

    Google Scholar 

  • Grundy HD, Ito J (1974) The refinement of the crystal structure of a synthetic non-stoichiometric Sr feldspar. Am Mineral 59:1319–1326

    Google Scholar 

  • Hafner SS, Virgo D, Warburton D (1971) Oxidation state of iron and plagioclase from lunar basalts. Earth Planet Sci Eett 12:159–166

    Google Scholar 

  • Hofmeister AM, Rossman GR (1984) Determination of Fe3+ and Fe2+ concentrations in feldspar by optical absorption and EPR sepctroscopy. Phys Chem Minerals 11:213–224

    Article  Google Scholar 

  • Hofmeister AM, Rossman GR (1985) A model for irradiative coloration of smoky feldspar and the inhibiting influence of water. Phys Chem Minerals 12:324–332

    Article  Google Scholar 

  • Hokanson Sa, Yund RA (1986) Comparison of alkali interdiffusion rates for cryptoperthites. Am Mineral 71:1409–1414

    Google Scholar 

  • Ito J (1976) High temperature solvent growth of anorthite on the join CaAl2Si2O8-SiO2. Contrib Mineral Petrol 59:187–194

    Google Scholar 

  • Kasper RB (1975) Cation diffusion in low albite. PhD thesis, Brown University, Providence, USA

    Google Scholar 

  • Kim K, Burley BJ (1971) Phase equilibria in the system NaAlSi3O8-NaAlSiO4-H2O with special emphasis on the stability of analcite. Can J Earth Sci 8:311–337

    Google Scholar 

  • Kroll H, Ribbe H (1980) Determinative diagrams for Al, Si order in plagioclases. Am Mineral 65:449–457

    Google Scholar 

  • Longhi J, Hays JF (1979) Phase equilibria and solid solution along the join CaAl2Si2O8-SiO2. Am J Sci 279:876–890

    Google Scholar 

  • Longhi J, Walker D, Hays JF (1976) Fe and Mg in plagioclase. Geochim Cosmochim Acta Suppl 7:1281–1300

    Google Scholar 

  • MacDonald JR (1976) Interpretation of a.c. impedance measurements in solids. In Mahan CD, Roth WL (eds) Superionic conducters. Plenum Press, New York London, pp 81–97

    Google Scholar 

  • Marfunin AS, Bershov LV, Meilman ML, Michoulier J (1967) Paramagnetic resonance of Fe3+ in some feldspars. Schweiz Mineral Petrogr Mitt 47:13–20

    Google Scholar 

  • McLaren AC, Marshal DB (1974) Transmission electron microscope study of the domain structures associated with the b-, c-, d-, e-and f-reflections in plagioclase feldspars. Contrib Mineral Petrol 44:237–249

    Article  Google Scholar 

  • Miosra NK, Venkatasubramanian VS (1977) Strontium diffusion in feldspars —a laboratory study. Geochim Cosmochim Acta 41:837–838

    Google Scholar 

  • Muehlenbachs K, Kushiro I (1974) Oxygen isotopes exchange and equilibrium of silicates with CO2 and O2. Carnegie Inst Washington Year Book 73:232–236

    Google Scholar 

  • Nagy KL, Giletti BJ (1986) Grain boundary diffusion of oxygen in a macroperthitic feldspar. Geochim Cosmochim Acta 50:1151–1158

    Article  Google Scholar 

  • Niebuhr HH, Zeira S, Hafner SS (1973) Ferric iron in plagioclase crystals from anorthosite 15415. Geochim Cosmochim Acta Suppl 4:971–982

    Google Scholar 

  • Petrov I, Hafner SS (1988) Location of trace Fe3+ in sanidine, KAlSi3O8. Am Mineral 73:97–104

    Google Scholar 

  • Petrovic R (1972) Alkali diffusion in alkali feldspars. PhD thesis, Yale University, New Haven, Connecticut, USA

    Google Scholar 

  • Petrovic R (1974) Diffusion of alkali ions in alkali feldspars. In: MacKenzie WS, Zussman J (eds) The feldspars. Manchester University Press, Manchester, pp 174–182

    Google Scholar 

  • Rainey CS, Wenk HR (1978) Intensity differences of subsidiary reflections in calcic plagioclases. Am Mineral 63:124–131

    Google Scholar 

  • Scala CM, Hutton CR, McLaren AC (1978) NMR and EPR studies of the chemically intermediate plagioclase feldspars. Phys Chem Minerals 3:33–44

    Article  Google Scholar 

  • Schmalzried H (1981) Solid state reactions, 2nd edn. Verlag Chemie, Weinheim, Deerfield Beach, Basel, p 254

    Google Scholar 

  • Schürmann K, Hafner SS (1972) On the amount of ferric iron in plagioclase from lunar igeneous rocks. Geochim Cosmochim Acta Suppl 3:615–621

    Google Scholar 

  • Sclar CB, Kastellic RL (1979) Iron in anorthite: Synthesis and characterization of the CaAl2Si2O8-CaFeSi3O8 series. Trans Am Geophys Union EOS 60:421

    Google Scholar 

  • Smith JV (1974) Feldspar minerals. I. Crystal structure and physical properties. Springer-Verlag, Heidelberg, p 690

    Google Scholar 

  • Smith JV, Brown WL (1988) Feldspar Minerals. I. Crystal structures, physical, chemical, and microtextural properties, 2nd edn. Springer-Verlag, Berlin Heidelberg New York London Paris Tokyo, p 828

    Google Scholar 

  • Smith JV, Ribbe PH (1969) Atomic movements in plagioclase feldspars: kinetic interpretation. Contrib Mineral Petrol 21:157–202

    Article  Google Scholar 

  • Stewart DB, Walker GW, Wright TL, Fahey JJ (1966) Physical properties of calcic labradorite from Lake County, Oregon. Am Mineral 51:177–197

    Google Scholar 

  • Tagai T, Korekawa M (1981) Crystallographic investigation of the Huttenlocher exsolution at high temperature. Phys Chem Minerals 7:77–81

    Article  Google Scholar 

  • Tagai T Joswig W, Korrekawa M, Wenk HR (1980) Die Bestimmung der Al/Si-Verteilung mittels Neutronenbeugung an einem Plagioklas An 66. Z Krist 151:77–89

    Google Scholar 

  • Tsuchiyama A, Takahashi E (1983) Melting kinetics of a plagioclase feldspar. Contrib Mineral Petrol 84:345–354

    Article  Google Scholar 

  • Weeks RA (1973) Paramagnetic resonance spectra of Ti3+, Fe3+, and Mn2+ in lunar plagioclases. J Geophys Res 78:2392–2401

    Google Scholar 

  • Wegener W, Frischat GH (1982) Calculation of correlation factors by a modified Bardeen-Herring simulation method. J Phys Chem Solids 43:189–197

    Google Scholar 

  • Weill DF, McCallum IS, Bottinga Y, Drake MJ, McKay GA (1970) Mineralogy and petrology of some Apollo 11 igenous rocks. Geochim Cosmochim Acta Suppl 1:937–955

    Google Scholar 

  • Wenk HR, Kroll H (1984) Analysis of 78–02, 78–03 and 78–04 plagioclase structures. Bull Minéral 107:467–487

    Google Scholar 

  • Wenk HR, Wilde WR (1973) Chemical anomalies of lunar plagioclase, described by substitution vectors and their relation to optical and structural properties. Contrib Mineral Petrol 41:89–104

    Article  Google Scholar 

  • Wenk HR, Joswig W, Tagai T, Korekawa M, Smith BK (1980) The average structure of An 62–66 labradorite. Am Mineral 65:81–95

    Google Scholar 

  • Yund RA (1983) Diffusion in feldspars. In Ribbe PH (ed) Feldspar Mineralogy. Rev Mineral 2, 2nd ed, pp 203–222

  • Yund RA (1964) Alkali feldspar exsolution: kinetics and dependence on alkali interdiffusion. In: Brown WL (ed) Feldspar and Feldspathoids. NATO ASI series C 137, D Reidel Publ Comp, Dortrecht Boston Lancaster, pp 281–315

    Google Scholar 

  • Yund RA, Smith BM, Tullis J (1981) Dislocation-assisted diffusion of oxygen in albite. Phys Chem Minerals 7:185–189

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Behrens, H., Johannes, W. & Schmalzried, H. On the mechanisms of cation diffusion processes in ternary feldspars. Phys Chem Minerals 17, 62–78 (1990). https://doi.org/10.1007/BF00209227

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00209227

Keywords

Navigation