Skip to main content
Log in

Amiloride-sensitive sodium channels in confluent M-1 mouse cortical collecting duct cells

  • Articles
  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Abstract

Confluent M-1 cells show electrogenic Na+ absorption and possess an amiloride-sensitive Na+-conductance (Korbmacher et al., J. Gen. Physiol. 102:761–793, 1993). In the present study, we further characterized this conductance and identified the underlying single channels using conventional patch clamp technique. Moreover, we isolated poly(A)+ RNA from M-1 cells to express the channels in Xenopus laevis oocytes, and to check for the presence of transcripts related to the epithelial Na+ channel recently cloned from rat colon (Canessa et al., Nature 361:467–470, 1993).

Patch clamp experiments were performed in 6–13-day-old confluent M-1 cells at 37°C. In whole-cell experiments application of 10−5 m amiloride caused a hyperpolarization of 24.9, sem±2.2 mV (n = 35) and a reduction of the inward current by 107±10 pA (n = 51) at a holding potential of -60 mV. Complete removal of bath Na+ had similar effects, indicating that the amiloride-sensitive component of the inward current is a Na+ current. The effect of amiloride was concentration-dependent with half-inhibition at 0.22 μm. The Na+ current saturated with increasing extracellular Na+ concentrations with an apparent K m of 24 mm. Na+ replacement for Li+ demonstrated a higher apical membrane conductance for Li+ than for Na+. In excised inside-out (i/o) or outside-out (o/o) patches from the apical membrane, we observed single-channels which showed slow kinetics and were reversibly inhibited by amiloride. Their average conductance for Na+ was 6.8±0.5 pS (n = 15) and for Li+ 11.2±1.0 pS (n = 14). They had no measurable conductance for K+. In o/o patches, channel activity was slightly voltage dependent with an open probability (NP o ) of 0.46±0.14 and 0.16±0.05 at a holding potential of -100 and 0 mV, respectively (n = 8, P<0.05).

Using the two-microelectrode voltage-clamp technique, we assayed defolliculated stage V–VI Xenopus oocytes for an amiloride-sensitive inward current 1–6 days after injection with H2O or with 20–50 ng of M-1 poly(A)+ RNA. In poly(A)+ RNA-injected oocytes held at -60 or -100 mV application of amiloride (2 μm) reduced the Na-inward current by 25.5±4.6 nA (n = 25) while it had no effect in H2O-injected oocytes (n = 19). Northern blot analysis of M-1 poly(A+) RNA revealed the presence of transcripts related to the three known subunits of the rat colon Na+ channel (Canessa et al., Nature 367:463–467, 1994).

We conclude that the channel in M-1 cells is closely related to the amiloride-sensitive epithelial Na+ channel in the rat colon and that the M-1 cell line provides a useful tool to investigate the biophysical and molecular properties of the corresponding channel in the cortical collecting duct.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ahmad, I., Korbmacher, C., Segal, A.S., Cheung, P., Boulpaep, E.L., Barnstable, C.J. 1992. Mouse cortical collecting duct cells show nonselective cation channel activity and express a gene related to the cGMP-gated rod photoreceptor channel. Proc. Natl. Acad. Sci. USA 89:10262–10266

    Google Scholar 

  • Asher, C., Eren, R., Kahn, L., Yeger, O., Garty, H. 1992. Expression of the amiloride-blockable Na+ channel by RNA from control versus aldosterone-stimulated tissue. J. Biol. Chem. 267:16061–16065

    Google Scholar 

  • Benos, D J., Awayda, M.S., Ismailov, I.I., Johnson, J.P. 1995. Structure and function of amiloride-sensitive Na+ channels. J. Membrane Biol. 143:1–18

    Google Scholar 

  • Botero-Velez, M., Curtis, J.J., Warnock, D.G. 1994. Brief report: Liddle's syndrome revisited—a disorder of sodium reabsorption in the distal tubule. N. Engl. J. Med 330:178–181

    Google Scholar 

  • Canessa, C.M., Horisberger, J.-D., Rossier, B.C. 1993. Epithelial sodium channel related to proteins involved in neurodegeneration. Nature 361:467–470

    Google Scholar 

  • Canessa, C.M., Schild, L., Buell, G., Thorens, B., Gautschi, L, Horisberger, J.-D., Rossier, B.C. 1994. Amiloride-sensitive epithelial Na+ channel is made of three homologous subunits. Nature 367:463–467

    Google Scholar 

  • Cantiello, H.F., Stow, J.L., Prat, A.G., Ausiello, D.A. 1991. Actin filaments regulate epithelial Na+ channel activity. Am. J. Physiol. 261:C882-C888

    Google Scholar 

  • Chen, T.-Y., Peng, Y.-W., Dhallan, R.S., Ahamed, B., Reed, R.R., Yau, K.-W. 1993. A new subunit of the cyclic nucleotide-gated cation channel in retinal rods. Nature 362:764–767

    Google Scholar 

  • Chomczynski, P., Sacchi, N. 1987. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal. Biochem. 162:156–159

    Article  CAS  PubMed  Google Scholar 

  • Dascal, N. 1987. The use of Xenopus oocytes for the study of ion channels. CRC Crit. Rev. Biochem. 22:317–387

    Google Scholar 

  • Frindt, G., Sackin, H., Palmer, L.G. 1990. Whole-cell currents in rat cortical collecting tubule: low-Na diet increases amiloride-sensitive conductance. Am. J. Physiol. 258:F562-F567

    Google Scholar 

  • Frindt, G., Silver, R.B., Windhager, E.E., Palmer, L.G. 1993. Feedback regulation of Na channels in rat CCT II. Effects of inhibition of Na entry. Am. J. Physiol. 264:F565-F574

    Google Scholar 

  • Frings, S., Purves, R.D., Macknight, A.D.C. 1988. Single-channel recordings from the apical membrane of the toad urinary bladder epithelial cell. J. Membrane Biol. 106:157–172

    Google Scholar 

  • Gögelein, H., Greger, R. 1986. Na+ selective channels in the apical membrane of rabbit late proximal rubules (pars recta). Pfluegers Arch. 406:198–203

    Google Scholar 

  • Hamill, O.P., Marty, A., Neher, E., Sakmann, B., Sigworth, F.J. 1981. Improved patch clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pfluegers Arch. 391:85–100

    Google Scholar 

  • Hamilton, K.L., Eaton, D.C. 1986. Regulation of single sodium channels in renal tissue: a role in sodium homeostasis. Fed. Proc. 45:2713–2717

    Google Scholar 

  • Hinton, C.F., Eaton, D.C. 1989. Expression of amiloride-blockable sodium channels in Xenopus oocytes. Am. J. Physiol. 257:C825-C829

    Google Scholar 

  • Horisberger, J.-D., Canessa, C.M., Rossier, B.C. 1993. The epithelial sodium channel: Recent developments. Cell. Physiol. Biochem. 3:283–294

    Google Scholar 

  • Jaisser, F., Coutry, N., Farman, N., Binder, H.J., Rossier, B.C. 1993. A putative H+-K+-ATPase is selectively expressed in surface epithelial cells of rat distal colon. Am. J. Physiol. 265:C1080-C1089

    Google Scholar 

  • Korbmacher, C., Barnstable, C.J. 1993. Renal epithelial cells show nonselective cation channel activity and express a gene related to the cGMP-gated photoreceptor channel. In: Nonselective cation channels: Pharmacology, Physiology and Biophysics. D. Siemen and J.K.-J. Hescheler, editors, pp. 147–164. Birkhäuser Verlag, Basel, Switzerland

    Google Scholar 

  • Korbmacher, C., Segal, A.S., Fejes-Tóth, G., Giebisch, G., Boulpaep, E.L. 1993. Whole-cell currents in single and confluent M-1 mouse cortical collecting duct cells. J. Gen. Physiol. 102:761–793

    Google Scholar 

  • Korbmacher, C., Volk, T., Segal, A.S., Boulpaep, E.L., Frömter, E. 1995. A calcium-dependent adenine nucleotide-sensitive nonselective cation channel in M-1 mouse cortical collecting duct cells. J. Membrane Biol. 146:29–45

    Google Scholar 

  • Krapivinsky, G., Gordon, E.A., Wickman, K., Velimirovic, B., Krapivinsky, L., Clapham, D.E. 1995. The G-protein-gated atrial K+ channel IKACh is a heteromultimer of two inwardly rectifying K+-channel proteins. Nature 374:135–141

    Google Scholar 

  • Kroll, B., Bautsch, W., Bremer, S., Wilke, M., Tümmler, B., Frömter, E. 1989. Selective expression of an amiloride-inhibitable Na+ conductance from mRNA of respiratory epithelium in Xenopus laevis oocytes. Am. J. Physiol. 257:L284-L288

    Google Scholar 

  • Laskowski, F.H., Christine, C.W., Gitter, A.H., Beyenbach, K.W., Gross, P., Frömter, E. 1990. Cation channels in the apical membrane of collecting duct principal cell epithelium in culture. Renal Physiol. Biochem. 13:70–81

    Google Scholar 

  • Liddle, G.W. 1963. A familial renal disorder simulating primary aldosteronism but with negligible aldosterone secretion. Trans. Am. Assoc. Physicians 76:199–213

    Google Scholar 

  • Light, D.B., McCann, F.V., Keller, T.M., Stanton, B.A. 1988. Amiloride-sensitive cation channel in apical membrane of inner medullary collecting duct. Am. J. Physiol. 255:F278–286

    Google Scholar 

  • Ling, B.N., Hinton, C.F., Eaton, D.C. 1991. Amiloride-sensitive sodium channels in rabbit cortical collecting tubule primary cultures. Am. J. Physiol. 261:F933-F944

    Google Scholar 

  • Lingueglia, E., Voilley, N., Waldmann, R., Lazdunski, M., Barbry, P. 1993. Expression cloning of an epithelial amiloride-sensitive Na+ channel. FEBS Lett. 318:95–99

    Google Scholar 

  • Milton, R.L., Caldwell, J.H. 1990. How do patch clamp seals form? A lipid bleb model. Pfluegers Arch. 416:758–765

    CAS  Google Scholar 

  • O'Brodovich, H., Canessa, C.M., Ueda, J., Rafii, B., Rossier, B.C., Edelson, J. 1993. Expression of the epithelial Na+ channel in the developing rat lung. Am. J. Physiol. 265:C491-C496

    Google Scholar 

  • O'Neil, R.G., Boulpaep, E.L. 1979. Effect of amiloride on the apical cell membrane cation channels of a sodium-absorbing, potassium-secreting renal epithelium. J. Membrane Biol. 50:365–387

    Google Scholar 

  • O'Neil, R.G., Boulpaep, E.L. 1982. Ionic conductive properties and electrophysiology of the rabbit cortical collecting tubule. Am. J. Physiol. 243:F81-F95

    Google Scholar 

  • Ono, S., Mougouris, T., DuBose Jr., T.D., Sansom, S.C. 1994. ATP and calcium modulation of nonselective cation channels in IMCD cells. Am. J. Physiol. 267:F558-F565

    Google Scholar 

  • Pácha, J., Frindt, G., Antonian, L., Silver, R.B., Palmer, L.G. 1993. Regulation of Na channels of the rat cortical collecting tubule by aldosterone. J. Gen. Physiol. 102:25–42

    Google Scholar 

  • Palmer, L.G. 1982. Ion selectivity of the apical membrane Na channel in the toad urinary bladder. J. Membrane Biol. 67:91–98

    Google Scholar 

  • Palmer, L.G. 1992. Epithelial Na Channels: Function and diversity. Annu. Rev. Physiol. 54:51–66

    Google Scholar 

  • Palmer, L.G., Antonian, L., Frindt, G. 1993. Regulation of the Na-K pump of the rat cortical collecting tubule by aldosterone. J. Gen. Physiol. 102:43–57

    Google Scholar 

  • Palmer, L.G., Corthesy-Theulaz, I., Gaeggeler, H.-P., Kraehenbuhl, J.-P., Rossier, B.C. 1990. Expression of epithelial Na channels in Xenopus Oocytes. J. Gen. Physiol. 96:23–46

    Google Scholar 

  • Palmer, L.G., Frindt, G. 1986. Amiloride-sensitive Na channels from the apical membrane of the rat cortical collecting tubule. Proc. Natl. Acad. Sci. USA 83:2767–2770

    Google Scholar 

  • Palmer, L.G., Frindt, G. 1988. Conductance and gating of epithelial Na channels from rat cortical collecting tubule. J. Gen. Physiol. 92:121–138

    Google Scholar 

  • Prat, A.G., Bertorello, A.M., Ausiello, D.A., Cantiello, H.F. 1993. Activation of epithelial Na+ channels by protein kinase A requires actin filaments. Am. J. Physiol. 265:C224-C233

    Google Scholar 

  • Renard, S., Voilley, N., Bassilana, F., Lazdunski, M., Barbry, P. 1995. Localization and regulation by steroids of the α and β subunits of the amiloride-sensitive Na+ channel in colon, lung and kidney. Pfluegers Arch. 430:299–307

    Google Scholar 

  • Rossier, B.C., Canessa, C.M., Schild, L., Horisberger, J.-D. 1994. Epithelial sodium channels. Curr. Opin. Nephrol. Hyperten. 3:487–496

    Google Scholar 

  • Sambrook, J., Fritsch, E.F., Maniatis, T. 1989. Molecular cloning. A laboratory manual, Cold Spring Harbor Laboratory Press, Cold Spring Harbor: Ed. 2nd

    Google Scholar 

  • Schild, L., Canessa, C.M., Shimkets, R.A., Gautschi, I., Lifton, R.P., Rossier, B.C. 1995. A mutation in the epithelial sodium channel causing Liddle's disease increases channel activity in the Xenopus laevis oocyte expression system. Proc. Natl. Acad. Sci. USA 92:5699–5703

    Google Scholar 

  • Shimkets, R.A., Warnock, D.G., Bositis, C.M., Nelson-Williams, C., Hansson, J.H., Schambelan, M., Gill Jr., J.R., Ulick, S., Milora, R.V., Findling, J.W., Canessa, C.M., Rossier, B.C., Lifton, R.P. 1994. Liddle's Syndrome: Heritable human hypertension caused by mutations in the β subunit of the epithelial sodium channel. Cell 79:407–414

    Google Scholar 

  • Smith, P.R., Saccomani, G., Joe, E.-H., Angelides, K.J., Benos, D.J. 1991. Amiloride-sensitive sodium channel is linked to the cytoskeleton in renal epithelial cells. Proc. Natl. Acad. Sci. USA 88:6971–6975

    Google Scholar 

  • Stoos, B.A., Náray-Fejes-Tóth, A., Carretero, O.A., Ito, S., Fejes-Tóth, G. 1991. Characterization of a mouse cortical collecting duct cell line. Kidney Int. 39:1168–1175

    Google Scholar 

  • Voilley, N., Lingueglia, E., Champigny, G., Mattéi, M.-G., Waldmann, R., Lazdunski, M., Barbry, P. 1994. The lung amiloride-sensitive Na+ channel: Biophysical properties, pharmacology, ontogenesis, and molecular cloning. Proc. Natl. Acad. Sci. USA 91:247–251

    Google Scholar 

  • Volk, T., Frömter, E., Korbmacher, C. 1995. Hypertonicity activates nonselective cation channels in mouse cortical collecting duct cells. Proc. Natl. Acad. Sci. USA 92:8478–8482

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

The expert technical assistance of U. Fink and I. Doering-Hirsch is gratefully acknowledged. We thank A. Rabe for programming the computer software. This work was supported by a grant from the Deutsche Forschungsgemeinschaft (DFG grant Fr 233/9-1).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Letz, B., Ackermann, A., Canessa, C.M. et al. Amiloride-sensitive sodium channels in confluent M-1 mouse cortical collecting duct cells. J. Membarin Biol. 148, 127–141 (1995). https://doi.org/10.1007/BF00207269

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00207269

Key words

Navigation