Skip to main content
Log in

Mesothermal gold vein mineralization of the Samdong mine, Youngdong mining district, Republic of Korea

A geochemical and fluid inclusion study

  • Published:
Mineralium Deposita Aims and scope Submit manuscript

Abstract

Mesothermal gold mineralization at the Samdong mine (5.5–13.5 g/ton Au), Youngdong mining district, is situated in massive quartz veins up to 1.2 m wide which fill fault fractures within upper amphibolite to epidote-amphibolite facies, Precambrian-banded biotite gneiss. The veins are mineralogically simple, consisting of iron- and base-metal sulfides and electrum, and are associated with weak hydrothermal alteration zones (<0.5 m wide) characterized by silicification and sericitization. Fluid inclusion data and equilibrium thermodynamic interpretation of mineral assemblages indicate that the quartz veins were formed at temperatures between 425 and 190°C from relatively dilute aqueous fluids (4.5–13.8 wt. % equiv NaCl) containing variable amounts of CO2 and CH4. Evidence of fluid unmixing (CO2 effervescence) during the early vein formation indicates approximate pressures of 1.3–1.9 kbars, corresponding to minimum depths of ≈ 5–7 km under a purely lithostatic pressure regime. Gold deposition occurred mainly at temperatures between 345 and 240 °C, likely due to decreases in sulfur activity accompanying fluid unmixing. The δ34S values of sulfide minerals (-3.0 to 5.3 ‰), and the measured and calculated O-H isotope compositions of ore fluids (δ18O = 5.7 to 7.6‰; δ = −74 to −80‰) indicate that mesothermal gold mineralization at the Samdong mine may have formed from dominantly magmatic hydrothermal fluids, possibly related to intrusion of the nearby ilmenite-series, ‘Kimcheon Granite’ of Late Jurassic age.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arai, Y., Kaminishi, G., Saito, S. (1971) The experimental determination of the P-V-T-X relations for the carbon dioxide-nitrogen and the carbon dioxide-methane systems. J. Chem. Eng. Japan 4: 113–122.

    Google Scholar 

  • Barton, P.B., Jr., Skinner, B.J. (1979) Sulfide mineral stabilities. In: Barnes, H.L. (ed.) Geochemistry of hydrothermal ore deposits. Wiley, New York pp. 278–403

    Google Scholar 

  • Barton, P.B., Jr., Toulmin, P. III (1964) The electrum-tarnish method for the determination of the fugacity of sulfur in laboratory sulfide systems. Geochim. Cosmochim. Acta 28:619–640

    Google Scholar 

  • Borisenko, A.S. (1977) Study of the salt composition of solutions in gas-liquid inclusions in minerals by the cryometric method. Soviet Geol. Geophys. 18:11–19

    Google Scholar 

  • Bowers, T.S. (1991) The deposition of gold and other metals: pressure-induced fluid immiscibility and associated stable isotope signatures. Geochim. Cosmochim. Acta 55:2427–2434

    Google Scholar 

  • Bowers, T.S., Helgeson, H.C. (1983a) Calculation of thermodynamic and geochemical consequences of nonideal mixing in the system H2O-CO2-NaCl on phase relations in geologic systems: equation of state for H2O-CO2-NaCl fluids at high pressures and temperatures. Geochim. Cosmochim. Acta 47:1247–1275

    Google Scholar 

  • Bowers, T.S., Helgeson, H.C. (1983b) Calculation of the thermodynamic and geochemical consequences of nonideal mixing in the system H2O-CO2-NaCl on phase relations in geologic systems: metamorphic equilibria at high pressures and temperatures. Am. Mineralogist 68:1059–1075

    Google Scholar 

  • Bozzo, A.T., Chen, H.S., Kass, J.R., Barduhn, A.J. (1975) The properties of hydrates of chlorine and carbon dioxide. Desalination 16:303–320

    Google Scholar 

  • Brown, P.E., Lamb, W.M. (1989) P-V-T properties of fluids in the system H2O-CO2-NaCl: new graphical presentations and implications for fluid inclusion studies. Geochim. Cosmochim. Acta 53:1209–1221

    Google Scholar 

  • Burruss, R.C. (1981) Analysis of phase equilibria in C-O-H-S fluid inclusions. In: Hollister, L.S., Crawford, M.L. (eds.) Mineralog. Assoc. Canada Short Course Handb. 6:39–74

  • Choi, S.G., Chi, S.J., Park, S.W. (1988) Gold-silver mineralization of the Au-Ag deposits at Yeongdong district, Chungcheongbuk-Do (in Korean). J. Korean Inst. Mining Geol. 21:367–380

    Google Scholar 

  • Choo, S.H., Kim, S.J. (1985) A study of Rb-Sr age determinations on the Ryeongnam Massif. I. Pyeonghae, Buncheon and Kimcheon granite gneisses (in Korean). In: Annual report 85–24. Korea Inst. Energy and Resources, Seoul, pp. 7–39

    Google Scholar 

  • Collins, P.L.F. (1979) Gas hydrates in CO2-bearing fluid inclusions and the use of freezing data for estimation of salinity. Econ. Geol. 74:1435–1444

    Google Scholar 

  • Crawford, M.L. (1981) Phase equilibria in aqueous fluid inclusions. In: Hollister, L.S., Crawford, M.L. (eds.) Mineralog. Assoc. Canada Short Course Handb. 6:75–100

  • Danniel, A., Tödheide, K., Franck, E.W. (1967), Verdampung, Gleichgewichte und kritische Kurven in den Systemen Attan/ Wasser und n-Butan/Wasser bei Hohen Drucken. Chemisches Ingenieurwesen Technik: 816–822

  • Diamond, L.W. (1992) Stability of CO2 clathrate hydrate + CO2 liquid + CO2 vapor + aqueous KCl-NaCl solutions: experimental determination and application to salinity estimates of fluid inclusions. Geochim. Cosmochim. Acta 56:273–280

    Google Scholar 

  • Drummond, S.E., Ohmoto, H. (1985) Chemical evolution and mineral deposition in boiling hydrothermal systems, Econ. Geol. 80:126–147

    Google Scholar 

  • Friedman, I., O'Neil, J.R. (1977) Compilation of stable isotope fractionation factors of geochemical interest. In: Fleischer, M. (ed.) Data of geochemistry. U. S. Geol. Survey Prof. Paper 440-KK pp. 1–12

  • Gehrig, M. (1980) Phasengleichgewichte und PVT-Daten ternärer Mischungen aus Wasser Kohlendioxid und Natriumchlorid bis 3 kbar und 550 °C. Unpublished Ph. D. Thesis, Institut für Physikalische Chemie, Universität Karlsruhe, Karlsruhe

    Google Scholar 

  • Grinenko, V.A. (1962) Preparation of sulfur dioxide for isotopic analysis. Zeitschr. Neorganische Chemie 7:2478–2483

    Google Scholar 

  • Hall, W.E., Freidman, I. (1963) Composition of fluid inclusions, Cave-in-Rock fluorite district, Illinois and Upper Mississippi Valley zinc-lead district. Econ. Geol. 58:886–911

    Google Scholar 

  • Hedenquist, J.W., Henley, R.W. (1985) The importance of CO2 on freezing point measurements of fluid inclusions: evidence from active geothermal systems and implications for epithermal ore depositions. Econ. Geol. 80:1379–1406

    Google Scholar 

  • Heyen, G., Ramboz, C., Dubessy, J. (1982) Modelling of phase equilibria in the system CO2-CH4 below 50 °C and 100 bar. Application to inclusion fluids (in French). Comptes Rendus Acad. Sci. Paris 294:203–206

    Google Scholar 

  • Hollister, L.S., Burruss, R.C. (1976) Phase equilibria in fluid inclusions from the Khtada Lake metamorphic complex. Geochim. Cosmochim. Acta 40:163–175

    Google Scholar 

  • Holloway, J.R. (1981) Compositions and volumes of supercritical fluids in the earth's crust. In: Hollister, L.S., Crawford, M.L. (eds.) Mineralog. Assoc. Canada Short Course Handb. 6:13–38

  • Hong, V.K. (1987) Geochemical characteristics of Precambrian, Jurassic and Cretaceous granites in Korea. J. Korean Inst. Mining Geol. 20:35–60

    Google Scholar 

  • Jacobs, G.K., Kerrick, D.M. (1981) Methane: an equation of state with application to the ternary system H2O-CO2-CH4. Geochim. Cosmochim. Acta 45:607–614

    Google Scholar 

  • Kretschmar, U., Scott, S.D. (1976) Phase relations involving arsenopyrite in the system Fe-As-S and their application. Can. Mineralogist 14:364–386

    Google Scholar 

  • Lee, S.W. (1986) Metamorphism of the Gneiss Complex in the southwestern region of the Sobaegsan Massif (in Korean). In: Memoirs in celebration of sixtieth birthday of Prof. Sang Man Lee. Seoul National University, Seoul PP. 133–153

    Google Scholar 

  • Matsuhisa, Y., Goldsmith, J.R., Clayton, R.N. (1979) Oxygen isotopic fractionation in the system quartz-albite-anorthite-water. Geochim. Cosmochim. Acta 43:1131–1140

    Google Scholar 

  • McCrea, J.M. (1950) The isotope geochemistry of carbonates and a paleotemperature scale. J. Chem. Physics 18:849–857

    Google Scholar 

  • Ohmoto, H., Rye, R.O. (1979) Isotopes of sulfur and carbon, In: Barnes, H.L. (ed.) Geochemistry of hydrothermal ore deposits. Wiley, New York pp. 509–567

    Google Scholar 

  • Potter, R.W., III., Clynne, M.A., Brown, D.L. (1978) Freezing point depression of aqueous sodium chloride solutions. Econ. Geol. 73:284–285

    Google Scholar 

  • Ramboz, C., Pichavant, M., Weisbrod, A. (1982) Fluid immiscibility in natural processes: use and misuse of fluid inclusion data. Chem. Geol. 37:29–48

    Google Scholar 

  • Roedder, E. (1984) Fluid inclusions. Rev. Mineralogy 12, 644p

  • Roedder, E., Bodnar, R.J. (1980) Geologic pressure determinations from fluid inclusion studies. Ann. Rev. Earth Planet. Sci. 8:263–301

    Google Scholar 

  • Rye, R.O. (1966) The carbon, hydrogen, and oxygen isotopic compositions of hydrothermal fluids responsible for the lead-zinc deposits at Providencia, Zacatecas, Mexico. Econ. Geol. 61:1339–1427

    Google Scholar 

  • Sasaki, A., Ishihara, S. (1980) Sulfur isotope characteristics of granitoids and related mineral deposits in Japan. Proceedings of the 5th IAGOD Symposium; 325–335

  • Sarashina, E., Arai, Y., Saito, S. (1971) Vapor-liquid equilibria for the nitrogen-methane-carbon dioxide system. J. Chem. Eng. Japan 4:377–378

    Google Scholar 

  • Seward, T.M. (1984) The transport and deposition of gold in hydrothermal systems. In: Foster, R.P. (ed.) Gold '82. Balkema, Rotterdam, pp. 165–181

    Google Scholar 

  • Shelton, K.L., Orville, P.M. (1980) Formation of synthetic fluid inclusions in natural quartz. Am. Mineralogist 65:1233–1236

    Google Scholar 

  • Shelton, K.L., So, C.S., Chang, J.S. (1988) Gold-rich mesothermal vein deposits of the Republic of Korea: Geochemical studies of the Jungwon gold area. Econ. Geol. 83:1221–1237

    Google Scholar 

  • Shelton, K.L., So, C.S., Haeussler, G.T., Chi, S.J., Lee, K.Y. (1990) Geochemical studies of the Tongyoung gold-silver deposits. Republic of Korea: evidence of meteoric water dominance in a Tebearing epithermal system. Econ. Geol. 85:1114–1132

    Google Scholar 

  • Shikazono, N., Shimizu, M. (1986) Compositional variations in AuAg series minerals from some gold deposits in the Korean peninsula. Mining Geology 36:545–553

    Google Scholar 

  • Shimazaki, H., Sato, K., Chon, H.T. (1981) Mineralization associated with Mesozoic felsic magmatism in Japan and Korea. Mining Geology 31:297–310

    Google Scholar 

  • Shimazaki, H., Sakai, H., Kaneda, H., Lee, M.S. (1985) Sulfur isotopic ratios of ore deposits associated with Mesozoic felsic magmatism in South Korea, with special reference to gold-silver deposits. Geochemical J. 19:163–169

    Google Scholar 

  • Shimazaki, H., Lee, M.S., Tsusue, A., Kaneda, H. (1986) Three epochs of gold mineralization in South Korea. Mining Geology 36:265–272

    Google Scholar 

  • So, C.S., Shelton, K.L. (1987a) Stable isotope and fluid inclusion studies of gold- and silver-bearing hydrothermal vein deposits, Cheonan-Cheongyang-Nonsan mining district, Republic of Korea. Cheonan area. Econ. Geol. 82:987–1000

    Google Scholar 

  • So, C.S., Shelton, K.L. (1987b) Fluid inclusion and stable isotope studies of gold-silver-bearing hydrothermal vein deposits, Yeoju mining district, Republic of Korea. Econ. Geol. 82:1309–1318

    Google Scholar 

  • So, C.S., Chi, S.J., Choi, S.H. (1988a) Geochemical studies on Au-Ag hydrothermal vein deposits, Republic of Korea: Jinan-Jeongeup mineralized area. J. Mineral Petrol. Econ. Geol. 83:449–471

    Google Scholar 

  • So, C.S., Shelton, K.L., Chi, S.J., Choi, S.H. (1988b) Stable isotope and fluid inclusion studies of gold-silver-bearing hydrothermal vein deposits, Cheonan-Cheongyang-Nonsan mining district, Republic of Korea: Cheongyang area. J. Korean Inst. Mining Geol. 21:149–164

    Google Scholar 

  • So, C.S., Choi, S.H., Lee, K.Y., Shelton, K.L. (1989a) Geochemical studies of hydrothermal gold deposits, Republic of Korea: Yangpyeong-Weonju area. J. Korean Inst. Mining Geol. 22:1–16

    Google Scholar 

  • So, C.S., Yun, S.T., Chi, S.J. (1989b) Geochemical studies of hydrothermal gold-silver deposits, Republic of Korea: Yangdong mining district. J. Geol. Soc. Korea 25:16–29

    Google Scholar 

  • So, C.S., Yun, S.T., Choi, S.H., Shelton, K.L. (1989c) Geochemical studies of hydrothermal gold-silver deposits, Republic of Korea: Youngdong mining district. Mining Geology 39:9–19

    Google Scholar 

  • Sterner, S.M., Bodnar, R.J. (1984) Synthetic fluid inclusions in natural quartz I, Compositional types synthesized and applications to experimental geochemistry. Geochim. Cosmochim. Acta 48:2659–2668

    Google Scholar 

  • Takenouchi, S., Kennedy, G.C. (1965) The solubility of carbon dioxide in NaCl solutions at high temperatures and pressures. Am. J. Sci. 263:445–454

    Google Scholar 

  • Taylor, H.P. Jr. (1979) Oxygen and hydrogen isotope relationships in hydrothermal mineral deposits. In: Barnes, H.L. (ed.) Geochemistry of hydrothermal ore deposits. Wiley, New York, pp. 236–277

    Google Scholar 

  • Tödheide, K., Franck, E.U. (1963) Das Zweiphasengebiet und die kritische Kurve im System Kohlendioxidwasser bis zu Drucken von 3500 bar. Z. Phys. Chemie, New Ser. 37:388–401

    Google Scholar 

  • Tsuchida, T. (1944) Ore deposits in Korea (in Japanese). Kasumigaseki, Tokyo, 329 p

  • Watanabe, M. (1981) Reconnaisance study on the fluid inclusions in some Jurassic and Cretaceous granitic rocks in the Republic of Korea. In: Tsusue, A. (ed.) Petrographic provinces of granitoids and associated metallic ore deposits in South Korean Peninsula. Unpublished Overseas Field Research Report, Kumamoto University, Kumamoto, Japan, pp. 109–124

    Google Scholar 

  • Yun, S.T., So. C.S., Choi, S.H., Shelton, K.L., Koo, J.H. (1993) Genetic environment of germanium-bearing gold-silver vein ores from the Wolyu mine, Republic of Korea, Mineral. Deposita 28:107–121

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

So, CS., Yun, ST. & Shelton, K.L. Mesothermal gold vein mineralization of the Samdong mine, Youngdong mining district, Republic of Korea. Mineral. Deposita 30, 384–396 (1995). https://doi.org/10.1007/BF00202281

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00202281

Keywords

Navigation