Skip to main content
Log in

Thermal diffusivity of mantle minerals

  • Original Paper
  • Published:
Physics and Chemistry of Minerals Aims and scope Submit manuscript

Abstract

The thermal diffusivity tensors at ambient pressure and temperature of three silicate mineral phases abundant in the upper mantle (San Carlos olivine [Mg0.89Fe0.11]2SiO4, Kilbourne Hole orthopyroxene [Mg1.63Fe0.17Ca0.04Mn0.01] [Cr0.01 Al0.12] [Si1.89Al0.11]O6 and a garnet of intermediate composition Py51Al32Gr16Sp1 are reported. The extension to high pressure and temperature of the experimental technique employed here is discussed and, for olivine, data at high pressure are also reported. The diffusivity in the two orthorhombic minerals is highly anisotropic, the components of the tensor along the a, b, and c crystallographic axes, in units of mm2/sec, being [2.16 1.25 1.87] in the case of olivine and [1.26 1.05 1.66] in the case of the orthopyroxene. The isotropic thermal diffusivity in garnet is 1.06 mm2/ sec. The experimental uncertainty is approximately 2%. The pressure dependence of thermal diffusivity is approximately 4% per GPa. The relation of thermal to elastic anisotropy is briefly considered. A model incorporating elastic anisotropy, anharmonicity described by acoustic Grüneisen parameters, Brillouin zone structure, and the increased phase volume for the scattering of short wavelength phonons provides a qualitatively reasonable description of the thermal diffusivity anisotropy. Since both olivine and orthopyroxene are aligned by flow deformation processes, the upper mantle is expected to be thermally anisotropic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Babuska V, Cara M (1991) Seismic Anisotropy in the Earth. Kluwer Academic Publ., Dordrecht, 217 pp

    Google Scholar 

  • Brown JM (1986) Interpretation of the D″ zone at the base of the mantle: dependence on assumed values of thermal conductivity. Geophys Res Lett 13:1509–1512

    Google Scholar 

  • Chai M, Brown JM, Slutsky LJ (1996) Elasticity of a Kilbourne Hole enstatite to 12.5 GPa., Elasticity of a pyrope-almandine grossular garnet to 22 GPa. (to be submitted)

  • Fayer MD (1986) Holographic grating generation of ultrasonic waves. IEEE J. Quantum Electronics 22:1437–1452

    Google Scholar 

  • Fujisawa H, Fujii N, Mizutani H, Kanamori H, Akimoto S (1968) Thermal diffusivity of Mg2SiO4, Fe2SiO4 and NaCl at high pressure and temperature. J Geophys Res 75(14):4727–4733

    Google Scholar 

  • Hearn E, Humphreys GG, Chai M, Brown JM (1996) Effect of anisotropy on development of oceanic asthenosphere. J Geophys Res (submitted)

  • Horai K (1971) Thermal conductivity of rock-forming minerals. J Geophys Res 76(5):1278–1308

    Google Scholar 

  • Kanamori H, Fujii N, Mizutani H (1968) Thermal diffusivity of rock-forming minerals from 300° to 1100° K. J Geophys Res 73(2):595–605

    Google Scholar 

  • Kieffer SW (1976) Lattice thermal conductivity within the earth and considerations of a relationship between the pressure dependence of the thermal diffusivity and the volume dependence of the Grüneisen parameter. J Geophys Res 81:3025–3030

    Google Scholar 

  • Leibfried G, Schlömann E (1954) Wärmeleitung in elektrischen isolierenden Kristallen. Nachr Ges Wiss Goett Math.-Phys K1 (IIA):71–93

  • Nicolas A, Christenson NI (1987) Formation of anisotropy in upper mantle peridotites — A review. In: Fuchs K, Froidevaux C (eds) Composition, Structure, and Dynamics of Lithosphere Asthenosphere Systems, 16. Amer Geophys Union, Washington DC

    Google Scholar 

  • Ribe NM, Yu Y (1991) A theory for plastic deformation and textural evolution of olivine polycrystals. J Geophys Res 96: 8325–8335

    Google Scholar 

  • Ross RG, Andersson P, Sundqvist B, Backstrom G (1984) Thermal conductivity of solids and liquds under pressure. Rep Prog Phys 47:1347–1402

    Google Scholar 

  • Roufosse M, Klemens PG (1973) Thermal conductivity of complex dielectric crystals. Phys Rev B(7):5379–5386

  • Schärmeli GH (1982) Anisotropy of olivine themal conductivity at 2.5 GPa up to 1500 K measured on optically non-thick sample. In: Schreyer W (eds) High-Pressure Research in Geosciences, E. Schweizerbartsche Verlags, Stuttgart, p. 349–373

    Google Scholar 

  • Schatz HF, Simmons G (1972) Thermal conductivity of Earth minerals at high temperatures. J Geophys Res 77(35):6966–6983

    Google Scholar 

  • Spohn T, Schubert G (1982) Modes of mantle convection and the removal of heat from the earth's interior. J Geophys Res 87:4682–4696

    Google Scholar 

  • Sumino Y, Anderson OL (1984) Elastic constants of minerals, in Handbook of Physical Properties of Rocks III. R. S. Carmichael Ed, CRC Press, Boca Raton FL

    Google Scholar 

  • Wooster WA (1936) Thermal conductivity in relation to crystal structure. Z Kristallogr 138–149

  • Yan YX, Cheng LT, Nelson KA (1987) Impulsive stimulated scattering. In: Clark JH, Hester RE (eds) Advances in non-linear spectroscopy. John Wiley Ltd, London

    Google Scholar 

  • Zaug J, Abramson EH, Brown JM, Slutsky LJ (1992) Elastic constants, equations of state and thermal diffusivity at high pressure. In: Syono Y, Manghnani M (eds) High Pressure Research: applications to Earth and Planetary Science. American Geophysical Union, Washington DC, p. 157–166

    Google Scholar 

  • Zaug J, Abramson EH, Brown JM, Slutsky LJ (1993) Sound velocities in olivine at Earth mantle pressures. Science(260):1487–1489

  • Zaug J, Slutsky LJ, Brown JM (1994) Equilibrium properties and structural relaxation in methanol to 31 GPa. J Phys Chem 98:6008–6018

    Google Scholar 

  • Ziman JM (1962) Electrons and Phonons. Oxford, London, 268 pp

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chai, M., Brown, J.M. & Slutsky, L.J. Thermal diffusivity of mantle minerals. Phys Chem Minerals 23, 470–475 (1996). https://doi.org/10.1007/BF00202033

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00202033

Keywords

Navigation