Skip to main content
Log in

Atmospheric science on the Galileo mission

  • Published:
Space Science Reviews Aims and scope Submit manuscript

Abstract

Observations from the ground and four fly-by spacecraft have provided initial reconnaissance of Jupiter's atmosphere. The Pioneer and Voyager data have raised new questions and underlined old ones about the basic state of the atmosphere and the processes determining the atmosphere's behavior. This paper discusses the main atmospheric science objectives which will be addressed by the Galileo (Orbiter and Probe) mission, organizing the discussion according to the required measurements of chemical composition, thermal structure, clouds, radiation budget, dynamics, upper atmosphere, and satellite atmospheres. Progress on the key questions will contribute not only to our knowledge of Jupiter's atmosphere but to a general understanding of atmospheric processes which will be valuable for helping us to understand the atmosphere and climate of the Earth.

Realization of the atmospheric science objectives of the Galileo mission depends upon: (a) coordinated measurements from the entry probe and the orbiter; (b) global observations; and (c) observations over the range of time-scales needed to characterize the basic dynamical processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Allison, M. D.: 1983, ‘Planetary Waves in Jupiter's Equatorial Atmosphere’, Bull. Am. Astron. Soc. 15, 836.

    Google Scholar 

  • Allison, M. D., and Gierasch, P. J.: 1982, ‘Jovian Atmospheric Dynamics: Global-Scale Motion and Shear Instability for a Thin, Nearly Adiabatic Upper Weather Layer’, Bull. Am. Astron. Soc. 14, 722.

    Google Scholar 

  • Allison, M. D., and Gierasch, P. J.: 1984, ‘Jovian Meteorology: Large-Scale Motion in a Thin, Weakly Stratified Weather Layer with Convective Forcing’, unpublished draft.

  • Appleby, J. F. and Hogan, J. S.: 1984, ‘Radiative-Convective Equilibrium Models of Jupiter and Saturn’, Icarus 59, 336.

    Google Scholar 

  • Axel, L.: 1972, ‘Inhomogeneous Models of the Atmosphere of Jupiter’, Astrophys. J. 173, 451.

    Google Scholar 

  • Bezard, B., Baluteau, J. P., and Marten, A.: 1983, ‘Study of the Deep Cloud Structure in the Equatorial Region of Jupiter from Voyager Infrared and Visible Data’, Icarus 54, 434.

    Google Scholar 

  • Bjoraker, G., Fink, U., Larson, H. P., and Kunde, V.: 1981, ‘H2O and PH3 Abundances from 5 μm Measurements’, Bull. Am. Astron. Soc. 13, 735.

    Google Scholar 

  • Bjoraker, G. L., Larson, H. P., and Kunde, V. G.: 1986a, ‘The Gas Composition of Jupiter Derived from 5-μm Airborne Spectroscopic Observations’, Icarus 66, 579.

    Google Scholar 

  • Bjoraker, G. L., Larson, H. P., and Kunde, V. G.: 1986b, ‘The Abundance and Distribution of Water Vapor in Jupiter's Atmosphere’, Astrophys. J. 311, 1058.

    Google Scholar 

  • Bragg, S. L., Brault, J. W., and Smith, W. H.: 1982, ‘Line Positions and Strengths in the H2 Quadrupole Spectrum’, Astrophys. J. 263, 999.

    Google Scholar 

  • Broadfoot, A. L., Sandel, B. R., Shemansky, D. E., McConnell, J. C, Smith, G. R., Holberg, J. B., Atreya, S. K., Donahue, T. M., Strobel, D. F., and Bertaux, J. L.: 1981, ‘Overview of the Voyager Ultraviolet Spectrometry Results through Jupiter Encounter’, J. Geophys. Res. 86, 8259.

    Google Scholar 

  • Buriez, J. C. and de Bergh, C.: 1980, ‘Methane Line Profile near 1.1 μ as a Probe of the Jupiter Cloud Structure and C/H Ratio’, Astron. Astrophys. 83, 149.

    Google Scholar 

  • Busse, F. H.: 1983, ‘A Model of Mean Zonal Flows in the Major Planets’, Geophys. Astrophys. Fluid Dynamics 23, 153.

    Google Scholar 

  • Caldwell, J., Cess, R. D., and Carlson, R. E.: 1979, ‘Temporal Characteristics of the Jovian Atmosphere’, Bull. Am. Astron. Soc. 11, 587.

    Google Scholar 

  • Caldwell, J., Tokunaga, A. T., and Orton, G. S.: 1981, ‘Further Observations of 8 μm polar brightenings on Jupiter’, Icarus 53, 133.

    Google Scholar 

  • Cameron, A. G. W. and Pollack, J. B.: 1976, ‘On the Origin of the Solar System and of Jupiter and its Satellites’, in T. Gehrels (ed.), Jupiter, Tucson, University of Arizona Press, pp. 61–84.

    Google Scholar 

  • Clark, P., French, R., and Gierasch, P.: 1979, ‘Voyager IRIS thermal data: Theory of Stratospheric Waves’, Bull. Am. Astron. Soc. 11, 587.

    Google Scholar 

  • Coffeen, D. L.: 1974, ‘Optical Polarization Measurements of the Jupiter Atmosphere at 103° Phase Angle’, J. Geophys. Res. 79, 3645.

    Google Scholar 

  • Colin, L. and Hunten, D. M.: 1977, ‘Pioneer Venus Experiment Descriptions’, Space Sci. Rev. 20, 451.

    Google Scholar 

  • Conrath, B. J. and Gierasch, P. J.: 1984, ‘Global Variation of the Para Hydrogen Fraction in Jupiter's Atmosphere and Implications for Dynamics on the Outer Planets’, Icarus 57, 184.

    Google Scholar 

  • Conrath, B. J., Gierasch, P. J. and Nath, N.: 1981, ‘Stability of Zonal Flows on Jupiter’, Icarus 48, 256.

    Google Scholar 

  • Cook, A. F., Duxbury, T. C, and Hunt, G. E.: 1979a, ‘A Lower Limit on the Top of Jupiter's Haze Layer’, Nature 280, 780.

    Google Scholar 

  • Cook, A. F., Duxbury, T. C., and Hunt, G. E.: 1979b, ‘First Results on Jovian Lightning’, Nature 280, 794.

    Google Scholar 

  • Drossart, P., Encrenaz, T., Kunde, V., Hanel, R., and Combes, M.: 1982, ‘An Estimate of the PH3, CH3D, and GeH4 Abundances on Jupiter from the Voyager IRIS Data at 4.5 μm’, Icarus 49, 416.

    Google Scholar 

  • Encrenaz, T. and Combes, M.: 1982, ‘On the C/H and D/H Ratios in the Atmospheres of Jupiter and Saturn’, Icarus 52, 54.

    Google Scholar 

  • Fanale, F. P., Banerdt, W. B., Elson, L. S., Johnson, T. V., and Zurek, R. W.: 1982, in D. Morrison (ed.), ‘Io's surface: Its Phase Composition and Influence on Io's Atmosphere and Jupiter's Magnetosphere’, The Satellites of Jupiter, University of Arizona Press, Chap. 20.

  • Flasar, F. M., Conrath, B. J., Pirraglia, J. A., Clark, P. C., French, R. G., and Gierasch, P. J.: 1981, ‘Thermal Structure and Dynamics of the Jovian Atmosphere, I. The Great Red Spot’, J. Geophys. Res. 86, 8759.

    Google Scholar 

  • Frank, L. et al.: 1987, Space Sci. Rev., to be published.

  • Gautier, D., Bezard, B., Marten, A., Baluteau, J. P., Scott, N., Chedin, A., Kunde, V., and Hanel, R.: 1982, ‘The C/H Ratio in Jupiter from the Voyager Infrared Investigation’, Astrophys. J. 257, 901.

    Google Scholar 

  • Gautier, D. and Owen, T.: 1983a, ‘Cosmological Implications of Helium and Deuterium Abundances on Jupiter and Saturn’, Nature 302, 215.

    Google Scholar 

  • Gautier, D. and Owen, T.: 1983b, ‘Cosmological Implications of Elemental and Isotopic Abundances in Atmospheres of the Giant Planets’, Nature 304, 691.

    Google Scholar 

  • Gautier, D., Bezard, B., Marten, A., Baluteau, J. P., Scott, N., Chedin, A., Kunde, V., and Hanel, R.: 1982, ‘The C/H Ratio in Jupiter from the Voyager Infrared Investigation’, Astrophys. J. 257, 901.

    Google Scholar 

  • Gierasch, P. J.: 1976, ‘Jovian Meteorology: Large-Scale Moist Convection’, Icarus 29, 445.

    Google Scholar 

  • Gierasch, P. J.: 1983, ‘Dynamical Consequences of Orthohydrogen-Parahydrogen Disequilibrium on Jupiter and Saturn’, Science 219, 847.

    Google Scholar 

  • Gillett, F. C., Low, F. J., and Stein, W. A.: 1969, ‘The 2.8–1.4 Micron Spectrum of Jupiter’, Astrophys. J. 157, 925.

    Google Scholar 

  • Gulkis, S. and Poynter, R.: 1972, ‘Thermal Radio Emission from Jupiter and Saturn’, Phys. Earth Planet. Interiors 6, 36–43.

    Google Scholar 

  • Gurnett, D. A., Shaw, R. R., Anderson, R. R., Kurth, W. S., and Scarf, F. L.: 1979, ‘Whistlers Observed by Voyager 1: Detection of Lightning on Jupiter’, Geophys. Res. Letters 6, 511.

    Google Scholar 

  • Hanel, R., Conrath, B., Herath, L., Kunde, V., and Pirraglia, J.: 1981, ‘Albedo, Internal Heat, and Energy Balance of Jupiter: Preliminary Results of the Voyager Infrared Investigation’, J. Geophys. Res. 86, 8705.

    Google Scholar 

  • Hanel, R. and 12 co-authors: 1979a, ‘Infrared Observations of the Jovian System from Voyager 1’, Science 204, 972.

    Google Scholar 

  • Hanel, R. and 14 co-authors: 1979b, ‘Infrared Observations of the Jovian System from Voyager 2’, Science 206, 952.

    Google Scholar 

  • Hord, C. W. and 6 co-authors: 1979, ‘Photometric Observations of Jupiter at 2400 Angstroms’, Science 206, 956.

    Google Scholar 

  • Hunt, G. E., Conrath, B., and Pirraglia, J.: 1981, ‘Visible and Infrared Observations of Jovian Plumes During the Voyager Encounter’, J. Geophys. Res. 86, 8777.

    Google Scholar 

  • Hunten, D. M. and Veverka, J.: 1976, ‘Stellar and Spacecraft Occultation by Jupiter: A Critical Review of Derived Temperature Profiles’, in T. Gehrels (ed.), Jupiter, University of Arizona Press, Tucson, 247–283.

    Google Scholar 

  • Ingersoll, A. P.: 1976, ‘The Atmosphere of Jupiter’, Space Sci. Rev. 18, 603.

    Google Scholar 

  • Ingersoll, A. P. and Pollard, D.: 1982, ‘Motion in the Interiors and Atmospheres of Jupiter and Saturn: Scale Analysis, Anelastic Equations, Barotropic Stability Criterion’, Icarus 52, 62.

    Google Scholar 

  • Ingersoll, A. P. and Porco, C. C.: 1978, ‘Solar Heating and Internal Heat Flow on Jupiter’, Icarus 35, 27.

    Google Scholar 

  • Ingersoll, A. P., Beebe, R. F., Mitchell, J. L., Garneau, G. W., Yagi, G. M., and Muller, I.: 1981, ‘Interactions of Eddies and Mean Zonal Flow on Jupiter as Inferred from Voyager 1 and 2 Images’, J. Geohpys. Res. 86, 8733.

    Google Scholar 

  • Ingersoll, A. P., Munch, G., Neugebauer, G., and Orton, G. S.: 1976, ‘Results of the Infrared Radiometer Experiment on Pioneers 10 and 11’, in T. Gehrels (ed.), Jupiter, University of Arizona Press, Tucson, 197–205.

    Google Scholar 

  • Keay, C. S. L., Low, F. J., Rieke, G. H., and Minton, R. B.: 1973, ‘High-Resolution Maps of Jupiter at Five Microns’, Astrophys. J. 183, 1063.

    Google Scholar 

  • Kim, S. J., Caldwell, J., Rivolo, A. R., Wagener, R., and Orton, G. S.: 1985, ‘Infrared Solar Brightenings on Jupiter III. Spectrometry from the Voyager 1 IRIS Experiment’, Icarus 64, 233.

    Google Scholar 

  • Kliore, A. J., Fjeldbo, G., Seidel, B. L., Sweetnam, D. N., Sesplaukis, T. T., and Woiceshyn, P. M.: 1975, ‘The Atmosphere of Io from Pioneer 10 Radio Occultation Measurements’, Icarus 24, 407.

    Google Scholar 

  • Knacke, R. F., Kim, S. J., Ridgway, S. T., and Tokunaga, A. T.: 1982, ‘The Abundancesof CH4, CH3D, NH3, and PH3 in the Troposphere of Jupiter Derived from High-Resolution 1100–1200 cm-1 Spectra’, Astrophys. J. 262, 388.

    Google Scholar 

  • Kumar, S.: 1982, ‘Photochemistry of SO2 in the Atmosphere of Io and Implications on Atmospheric Escape’, J. Geophys. Res. 87, 1677.

    Google Scholar 

  • Kumar, S. and Hunten, D. M.: 1982, ‘The Atmospheres of Io and Other Satellites’, in D. Morrison (ed.), The Satellites of Jupiter, University of Arizona Press, Chap. 21.

  • Kunde, V., Hanel, R., Maguire, W., Gautier, D., Baluteau, J. P., Marten, A., Chedin, A., Husson, N., and Scott, N.: 1982, ‘The Tropospheric Gas Composition of Jupiter's North Equatorial Belt (NH3, PH3, CH3D, GeH4, H2O) and the Jovian D/H Isotopic Ratio’, Astrophys. J. 263, 443.

    Google Scholar 

  • Lacis, A. A. and Hansen, J. E.: 1974, ‘Atmosphere of Venus: Implications of Venera 8 Sunlight Measurements’, Science 184, 979.

    Google Scholar 

  • Lanzerotti, L. J., Rinnert, K., Krider, E. P., Uman, M. A., Dehmel, G., Gliem, F. O., and Axford, W. I.: 1983, in L. H. Ruhunke and J. Latham (eds.), Planetary Lightning and Lightning Measurements on the Galileo Probe to Jupiter's Atmosphere, Proc. Atmos. Electricity, Deepak Publ. Co., p. 411.

  • Larson, H. P., Fink, U., Treffers, R. R., and Gautier, T. N.: 1975, ‘Detection of Water Vapor on Jupiter’, Astrophys. J. 197, L137.

    Google Scholar 

  • Lebofsky, L. A.: 1974, ‘Chemical Composition of Saturn's Rings and Icy Satellites’, Doctoral dissertation, Massachusetts Institute of Technology, Cambridge, Mass.

    Google Scholar 

  • Lewis, J. S.: 1969a, ‘The Clouds of Jupiter and the NH3-H2O and NH3-H2S Systems’, Icarus 10, 365.

    Google Scholar 

  • Lewis, J. S.: 1969b, ‘Observability of Spectroscopically Active Compounds in the Atmosphere of Jupiter’, Icarus 10, 393.

    Google Scholar 

  • Lewis, J. S. and Prinn, R. G.: 1970, ‘Jupiter's Clouds: Structure and Composition’, Science 169, 472.

    Google Scholar 

  • Lewis, J. S., and Prinn, R. G.: 1971, in A. Schwartz (ed.), ‘Chemistry and Photochemistry of the Atmosphere of Jupiter’, Theory and Experiment in Exobiology, Wolters-Noordhoff, Groningen, Netherlands, pp. 123–142.

    Google Scholar 

  • Limaye, S. S., Revercomb, Sromovsky, L. A., Krauss, R. J., Santek, D. A., and Suomi, V. E.: 1982, ‘Jovian Winds from Voyager 2. Part I: Zonal Mean Circulation’, J. Atmos. Sci. 39, 1413.

    Google Scholar 

  • Lindal, G. F., Wood, G. E., Levy, G. S., Anderson, J. D., Sweetnam, D. N., Hotz, H. B., Buckles, B. J., Holmes, D. P., Doms, P. E., Eshleman, V. R., Tyler, G. L., and Croft, T. A.: 1981, ‘The Atmosphere of Jupiter: An Analysis of the Voyager Radio Occultation’, J. Geophys. Res. 86, 8721.

    Google Scholar 

  • Marten, A., Courtin, R., Gautier, D., and Lacombe, A.: 1980, ‘Ammonia Vertical Density Profiles in Jupiter and Saturn from Their Radio-Electric and Infrared Emissivities’, Icarus 41, 410.

    Google Scholar 

  • McConnell, J. C., Holberg, J. B., Smith, G. R., Sandel, B. R., Shemansky, D. E., and Broadfoot, A. L.: 1982, ‘A New Look at the Ionosphere of Jupiter in Light of the UVS Occultation Results’, Planetary Space Sci. 30, 151.

    Google Scholar 

  • Oort, A. H., and Vonder Haar, T. H.: 1976, ‘On the Observed Annual Cycle in the Ocean-Atmosphere Heat Balance over the Northern Hemisphere’, J. Phys. Ocean. 6, 781.

    Google Scholar 

  • Orton, G. S.: 1977, ‘Recovery of the Mean Jovian Temperature Structure from Inversion of Spectrally Resolved Thermal Radiance Data’, Icarus 32, 41.

    Google Scholar 

  • Orton, G. S. and Ingersoll, A. P.: 1976, ‘Pioneer 10 and 11 and Ground-Based Infrared Data on Jupiter: The Thermal Structure and He-H2 Ratio’, in T. Gehrels (ed.), Jupiter, University of Arizona Press, Tucson, pp. 206–215.

    Google Scholar 

  • Orton, G. S., Appleby, J. F., and Martonchik, J. V.: 1982, ‘The Effect of Ammonia, Ice Clouds in the Atmosphere of Jupiter on Outgoing Thermal Radiation’, Icarus 52, 94.

    Google Scholar 

  • Owen, T.: 1969, ‘The Spectra of Jupiter and Saturn in the Photographic Infrared’, Icarus 10, 355.

    Google Scholar 

  • Pearl, J., Hanel, R., Kunde, V., Maguire, W., Fox, K., and Gupta, S.: 1979, ‘Identification of Gaseous SO2 and New Upper Limits for Other Gases on Io’, Nature 280, 755.

    Google Scholar 

  • Pirraglia, J. A., Conrath, B. J., Allison, and Gierasch, P. J.: 1981, ‘Thermal Structure and Dynamics of Saturn and Jupiter’, Nature 292, 677.

    Google Scholar 

  • Prinn, R. G. and Lewis, J. S.: 1975, ‘Phosphine on Jupiter and Implications for the Great Red Spot’, Science 190, 274.

    Google Scholar 

  • Prinn, R. G. and Owen, T.: 1976, ‘Chemistry and Spectroscopy’, in T. Gehrels (ed.), Jupiter, University of Arizona Press, Tucson, pp. 319–371.

    Google Scholar 

  • Reeves, H., Audouze, J., Fowler, W. A., and Schramm, D. N.: 1973, ‘On the Origin of Light Elements’, Astrophys. J. 179, 909.

    Google Scholar 

  • Rinnert, K.: 1983, ‘Lightning within Planetary Atmospheres’, in H. Volland (ed.), CRC Handbook of Atmospheric Science, CRC Press, Boca Raton, Florida.

    Google Scholar 

  • Rinnert, K., Lanzerotti, L. J., Dehmel, G., Gliem, F. O., Krider, E. P., and Uman, M. A.: 1984: ‘RF and Optical Measurements of Jupiter Lightning on the Galileo Jupiter Probe’, Proc. 7th Inter. Conf. Atmos. Electr., Am. Meteor. Soc., June.

  • Rinner, K., Lanzerotti, L. J., Krider, E. P., Uman, M. A., Dehmel, G., Gliem, F. O., and Axford, W. I.: 1979, ‘Electromagnetic Noise and Radio Wave Propagation Below 100 kHz in the Jovian Atmosphere, 1, The Equatorial Region’, J. Geophys. Res. 84, 5181.

    Google Scholar 

  • Ross, J. E. and Aller, L. H.: 1976, ‘The Chemical Composition of the Sun’, Science 191, 1223.

    Google Scholar 

  • Sato, M. and Hansen, J. E.: 1979, ‘Jupiter's Atmospheric Composition and Cloud Structure Deduced from Absorption Bands in Reflected Sunlight’, J. Atmos. Sci. 36, 1133.

    Google Scholar 

  • Sill, G. T.: 1976, ‘The Chemistry of the Jovian Cloud Colors’, in T. Gehrels (ed.), Jupiter, University of Arizona Press, Tucson, pp. 372–383.

    Google Scholar 

  • Smith, P. H. and Tomasko, M. G.: 1984, ‘Photometry and Polarimetry of Jupiter at Large Phase Angles. II. Polarimetry of the South Tropical Zone, South Equatorial Belt, and the Polar Regions from the Pioneer 10 and 11 Missions’, Icarus 58, 35.

    Google Scholar 

  • Smith, D. W., Greene, T. F., and Shorthill, R. W.: 1977, ‘The Upper Jovian Atmosphere Aerosol Content Determined from a Satellite Eclipse Observation’, Icarus 30, 697.

    Google Scholar 

  • Smith, B. A. and 10 co-authors: 1977, ‘Voyager Imaging Experiment’, Space Sci. Rev. 21, 103.

    Google Scholar 

  • Smith, B. A. and 21 co-authors: 1979a, ‘The Jupiter System through the Eyes of Voyager 1’, Science 204, 951.

    Google Scholar 

  • Stoll, C. and Tomasko, M. G.: 1979, ‘Jupiter's Atmosphere: Constraints on Scattering Particles from Polarization Measurements’, Bull. Am. Astron. Soc. 11, 588.

    Google Scholar 

  • Stone, P. H.: 1972, ‘A Simplified Radiative-Dynamical Model for the Static Stability of Rotating Atmospheres’, J. Atmos. Sci. 29, 405.

    Google Scholar 

  • Stone, P. H.: 1976, ‘The Meteorology of the Jovian Atmosphere’, in T. Gehrels (ed.), Jupiter, University of Arizona Press, Tucson, pp. 586–618.

    Google Scholar 

  • Terrile, R. J.: 1978, ‘High Spatial Resolution Infrared Imaging of Jupiter: Implications for the Vertical Cloud Structure from Five-Micron Measurements’, Ph.D. Thesis, California Institute of Technology, Pasadena, 143 pp.

    Google Scholar 

  • Terrile, R. J. and Westphal, J. A.: 1977, ‘The Vertical Cloud Structure of Jupiter from 5 μm Measurements’, Icarus 30, 274.

    Google Scholar 

  • Terrile, R. J., Becklin, E. E., Capps, R. W., and Cruikshank, D. P.: 1979, ‘Ground-Based Infrared Imaging of Jupiter During the Voyager Encounters’, Bull. Am. Astron. Soc. 11, 586.

    Google Scholar 

  • Terrile, R. J., Taylor, F. W., and Beer, R.: 1978, ‘New Models of the Clouds of Jupiter from Radiometry and Spectrometry in the 5 Micron Spectral Window’, Bull. Am. Astron. Soc. 10, 562.

    Google Scholar 

  • Tomasko, M. G., Clements, A. E., and Castillo, N. D.: 1974, Limb Darkening of Two Latitudes of Jupiter at Phase Angles of 34° and 109°, J. Geophys. Res. 79, 3653.

    Google Scholar 

  • Tomasko, M. G., West, R. A., and Castillo, N. D.: 1978, ‘Photometry and Polarimetry of Jupiter at Large Phase Angles. I. Analysis of Imaging Data of a Prominent Belt and a Zone from Pioneer 10’, Icarus 33, 558.

    Google Scholar 

  • Trauger, J. T., Roesler, F. L., and Mickelson, M. E.: 1977, Paper presented at 32nd Symp. on Molecular Spectrosc., June 13–17, Ohio State University, Columbus.

    Google Scholar 

  • Uman, M. A.: 1969, Lightning, McGraw-Hill, New York.

    Google Scholar 

  • Wallace, L. and Hunten, D. M.: 1978, ‘The Jovian Spectrum in the Region 0.4–1.1 μm: The C/H Ratio’, Rev. Geophys. Space Phys. 16, 289.

    Google Scholar 

  • Weidenschilling, S. J. and Lewis, J. S.: 1973, ‘Atmospheric and Cloud Structure of the Jovian Planets’, Icarus 20, 465.

    Google Scholar 

  • West, R. A.: 1979, ‘Spatially Resolved Methane Band Photometry of Jupiter. II. Analysis of the South Equatorial Belt and South Tropical Zone Reflectivity’, Icarus 38, 34.

    Google Scholar 

  • West, R. A. and Tomasko, M. G.: 1980, ‘Spatially Resolved Methane Band Photometry of Jupiter. III. Cloud Vertical Structures for Several Axisymmetric Bands and the Great Red Spot’, Icarus 41, 278.

    Google Scholar 

  • West, R. A., Hord, C., Simmons, K., Coffeen, D., Sato, M., and Lane, A.: 1981, ‘Near-Ultraviolet Scattering Properties of Jupiter’, J. Geophys. Res. 86, 8783.

    Google Scholar 

  • West, R. A., Kupferman, P. N., and Hart, H.: 1985, ‘Voyager 1 Imaging and IRIS Observations of Jovian Methane Absorption and Thermal Emission: Implications for Cloud Structure’, Icarus 61, 311.

    Google Scholar 

  • Westphal, J. A., Matthews, K., and Taylor, R. J.: 1974, ‘Five Micron Pictures of Jupiter’, Astrophys. J. 188, L111.

    Google Scholar 

  • Williams, G. P.: 1978, ‘Planetary Circulations: 1. Barotropic Representations of Jovian and Terrestrial Turbulence’, J. Atmos. Sci. 35, 1399.

    Google Scholar 

  • Williams, G. P.: 1979, ‘Planetary Circulations: 2. The Jovian Quasi-Geostrophic Regime’, J. Atmos. Sci. 36, 932.

    Google Scholar 

  • Williams, M. A., Krider, E. P., and Hunten, D. M.: 1983, ‘Planetary Lightning: Earth, Jupiter, and Venus’, Rev. Geophys. Space Phys. 21, 892.

    Google Scholar 

  • Yung, Y. L. and McElroy, M. B.: 1977, ‘Stability of an Oxygen Atmosphere on Ganymede’, Icarus 30, 97.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

The Atmospheres Working Group also includes: M. D. Allison, M. J. S. Belton, R. W. Boese, R. W. Carlson, C. R. Chapman, T. Encrenaz, V. R. Eshleman, P. J. Gierasch, C. W. Hord, H. T. Howard, L. J. Lanzerotti, H. B. Niemann, G. S. Orton, T. Owen, C. B. Pilcher, J. B. Pollack, B. Ragent, W. B. Rossow, A. Seiff, A. I. Stewart, P. H. Stone, F. W. Taylor, G. L. Tyler, U. von Zahn, and R. A. West.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hunten, D.M., Colin, L. & Hansen, J.E. Atmospheric science on the Galileo mission. Space Sci Rev 44, 191–240 (1986). https://doi.org/10.1007/BF00200817

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00200817

Keywords

Navigation