Skip to main content
Log in

Retinally perceived light is not essential for photic regulation of pineal melatonin rhythms in the pigeon: studies with microdialysis

  • Original Papers
  • Published:
Journal of Comparative Physiology A Aims and scope Submit manuscript

Abstract

Using in vivo microdialysis, effects of retinally perceived light on pineal melatonin release and its rhythmicity was examined in the pigeon. In the first experiment, light-induced suppression of pineal melatonin release was studied. Although light given to the whole body during the dark strongly suppressed pineal melatonin release to a daytime level, light exclusively delivered to the eyes did not remarkably inhibit melatonin release. In the second experiment, in order to determine whether retinally perceived light has phase-shifting effects on pineal melatonin rhythms, pigeons were given a single light pulse of 2 h at circadian time (CT) 18 and the phases of the second cycle after the light pulse were compared with those of control pigeons without the light pulse. In this experiment, phase advances of pineal melatonin rhythms were observed when the light was given to the whole body but not when only the eyes were illuminated. In a third experiment, after entrainment to light-dark 12:12 (LD 12:12) cycles, birds whose heads were covered with black tapes were transferred into constant light (LL) conditions and only the eyes were exposed to new LD cycles for 7 days (the phase was advanced by 6 h from the previous cycles) using a patching protocol. This procedure, however, could not entrain pineal melatonin rhythms to the retinal LD cycles. These results indicate that the eyes are not essential for photic regulation of pineal melatonin release and its rhythmicity in the pigeon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

CT :

circadian time

LD :

light-dark

LL :

constant light

SCN :

suprachiasmatic nucleus

LLdim :

constant dim light

NE :

norepinephrine

SCG :

superior cervical ganglia

WB :

whole body

E :

eye

EX :

extraretina

C :

control

References

  • Barrett RK, Underwood H (1991) Retinally perceived light can entrain the pineal melatonin rhythm in Japanese quail. Brain Res 563:87–93

    Google Scholar 

  • Barrett RK, Underwood H (1992) The superior cervical ganglia are not necessary for entrainment or persistence of the pineal melatonin rhythm in Japanese quail. Brain Res 569:249–254

    Google Scholar 

  • Cassone VM (1991) Melatonin and suprachiasmatic nucleus function. In: Klein DC, Moore RY, Reppert SM (eds) Suprachiasmatic nucleus, the mind's clock. Oxford University Press, New York Oxford, pp 309–323

    Google Scholar 

  • Cassone VM, Menaker M (1983) Sympathetic regulation of chicken pineal rhythms. Brain Res 272:311–317

    Article  CAS  PubMed  Google Scholar 

  • Cassone VM, Menaker M (1984) Is the avian circadian system a neuroendocrine loop? J Exp Zool 232:539–549

    Google Scholar 

  • Chabot CC, Menaker M (1992) Effects of physiological cycles of infused melatonin on circadian rhythmicity in pigeons. J Comp Physiol A 170:615–622

    Google Scholar 

  • Collin JP (1979) Recent advances in pineal cytochemistry. Evidence of the production of indolamines and proteinaceous substances by rudimentary photoreceptor cells and pinealocytes of amniota. In: Ariëns Kappers J, Pëvet P (eds) The pineal gland of vertebrates including man (Progress in Brain Research, vo152). Elsevier, Amsterdam, pp 271–295

    Google Scholar 

  • Ebihara S, Uchiyama K, Oshima I (1984) Circadian organization in the pigeon, Columba livia: the role of the pineal organ and the eye. J Comp Physiol A 154:59–69

    Google Scholar 

  • Ebihara S, Oshima I, Yamada H, Goto M, Sato K (1987) Circadian organization in the pigeon. In: Hiroshige T, Honma KS (eds) Comparative aspects of circadian clocks. Hokkaido Univ Press, Sapporo, pp 84–94

    Google Scholar 

  • Gwinner E (1989) Melatonin in the circadian system of birds: model of internal resonance. In: Hiroshige T, Honma KS (eds) Circadian clocks and ecology. Hokkaido Univ Press, Sapporo, pp 127–145

    Google Scholar 

  • Hasegawa M, Ebihara S (1992) Circadian rhythms of pineal melatonin release in the pigeon measured by in vivo microdialysis. Neuroscis Lett 148:89–92

    Google Scholar 

  • Menaker M, Keatts H (1968) Extraretinal light perception in the sparrow. II. Photoperiodic stimulation of testis growth. Proc Natl Acad Sci USA 60:146–151

    Google Scholar 

  • Menaker M, Roberts R, Elliott J, Underwood H (1970) Extraretinal light perception in the sparrow. III. The eyes do not participate in photoperiodic photoreception. Proc Natl Acad Sci USA 67:320–325

    Google Scholar 

  • Oshima I, Yamada H, Sato K, Ebihara S (1987) The phase relationship between the circadian rhythms of locomotor activity and circulating melatonin in the pigeon (Columba livia). Gen Comp Endocrinol 67:409–414

    Google Scholar 

  • Oshima I, Yamada H, Goto M, Sato K, Ebihara S (1989) Pineal and retinal melatonin is involved in the control of circadian locomotor and body temperature rhythms in the pigeon. J Comp Physiol A 166:217–226

    Google Scholar 

  • Owman C, Rüdeberg C, Ueck M (1970) Fluoreszenzmikroskopischer Nachweis biogener Monoamine in der Epiphysis cerebri von Rana esculenta und Rana pipiens. Z Zellforsch 111:550–558

    Google Scholar 

  • Reiter RJ (1991) Pineal melatonin: cell biology of its synthesis and of its physiological interactions. Endocrine Rev 12:151–180

    Google Scholar 

  • Sato T, Wake K (1983) Innervation of the avian pineal organ: a comparative study. Cell Tissue Res 233:237–264

    Google Scholar 

  • Takahashi JS, Murakami N, Nikaido SS, Pratt BL, Robertson LM (1989) The avian pineal, a vertebrate model system of the circadian oscillator: cellular regulation of circadian rhythms by light, second messengers, and macromolecular synthesis. Recent Prog Horm Res 45:279–352

    Google Scholar 

  • Taniguchi M, Murakami N, Nakamura H, Nasu T, Shinohara S, Etoh T (1993) Melatonin release from pineal cells of diurnal and nocturnal birds. Brain Res 620:297–300

    Google Scholar 

  • Underwood H, Siopes T (1984) Circadian organization in Japanese quail. J Exp Zool 232:557–566

    Google Scholar 

  • Yamada H, Oshima I, Sato K, Ebihara S (1988) Eoss of the circadian rhythms of locomotor activity, food intake, and plasma melatonin concentration induced by constant bright light in the pigeon (Columba livia). J Comp Physiol A 163:459–463

    Google Scholar 

  • Zatz M, Mullen DA (1988) Norepinephrine, acting via adenylate cyclase, inhibits melatonin output but does not phase-shift the pacemaker in cultured chick pineal cells. Brain Res 450:137–143

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hasegawa, M., Adachi, A., Yoshimura, T. et al. Retinally perceived light is not essential for photic regulation of pineal melatonin rhythms in the pigeon: studies with microdialysis. J Comp Physiol A 175, 581–586 (1994). https://doi.org/10.1007/BF00199479

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00199479

Key words

Navigation