Skip to main content
Log in

Type I callus as a bombardment target for generating fertile transgenic maize (Zea mays L.)

  • Published:
Planta Aims and scope Submit manuscript

Abstract

To develop a less genotype-dependent maize-transformation procedure, we used 10-month-old Type I callus as target tissue for microprojectile bombardment. Twelve transgenic callus lines were obtained from two of the three anther-culture-derived callus cultures representing different gentic backgrounds. Multiple fertile transgenic plants (T0) were regenerated from each transgenic callus line. Transgenic leaves treated with the herbicide Basta showed no symptoms, indicating that one of the two introduced genes, bar, was functionally expressing. Data from DNA hybridization analysis confirmed that the introduced genes (bar and uidA) were integrated into the plant genome and that all lines derived from independent transformation events. Transmission of the introduced genes and the functional expression of bar in T1 progeny was also confirmed. Germination of T1 immature embryos in the presence of bialaphos was used as a screen for functional expression of bar; however, leaf painting of T1 plants proved a more accurate predictor of bar expression in plants. This study suggests that maize Type I callus can be transformed efficiently through microprojectile bombardment and that fertile transgenic plants can be recovered. This system should facilitate the direct introduction of agronomically important genes in to commercial genotypes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

GUS:

β-glucuronidase

PAT:

phosphinothricin acetyltransferase

References

  • Bevan, M., Barnes, W.M., Chilton, M. (1983) Structure and transcription of the nopaline synthase gene region of T-DNA. Nucleic Acid Res. 11, 369–385

    Google Scholar 

  • Casas, A.M., Kononowicz, A.K., Zehr, U.B., Tomes, D.T., Axtell, J.D., Butler, L.G., Bressan, R.A., Hasegawa, P.M. (1993) Transgenic sorghum plants via microprojectile bombardment. Proc. Natl. Acad. Sci. USA 90, 11212–11216

    Google Scholar 

  • Christensen, A.H., Sharrock, R.A., Quail, P.H. (1992) Maize polyubiquitin genes: structure, thermal perturbation of expression and transcript splicing, and promoter activity following transfer to protoplasts by electroporation. Plant Mol. Biol. 18, 675–689

    Google Scholar 

  • Cone, K. (1989) Yet another rapid plant DNA prep. Maize Genet. Coop. News Lett. 63, 68

    Google Scholar 

  • Daines, R.J. (1990) DeKalb researchers improve maize transformation rates. Biolistic Part. Deliv. Syst. Newslett. 1, 1, 4

    Google Scholar 

  • D'Halluin, K., Bonne, E., Bossut, M., Beukeleer, M., Leemans, J. (1992) Transgenic maize plants by tissue electroporation. Plant Cell 4, 1495–1505

    Google Scholar 

  • Duncan, D.R., Williams, M.E., Zehr, B.E., Widholm, J.M. (1985) The production of callus capable of plant regeneration from immature embryos of numerous Zea mays genotypes. Planta 165, 322–332

    Google Scholar 

  • Fromm, M.E., Morrish, F., Armstrong, C., Williams, R., Thomas, J., Klein, T.M. (1990) Inheritance and expression of chimeric genes in the progeny of transgenic maize plants. Bio/Technology 8, 833–839

    Google Scholar 

  • Genovesi, A.D. (1990) Maize (Zea mays L.): In vitro production of haploids. In: Biotechnology in agriculture and forestry, vol. 12: Haploids in crop improvement I, pp. 176–203, Bajaj, Y.P.S., ed. Springer-Verlag, Heidelberg

    Google Scholar 

  • Genovesi, D., Willetts, N., Zachwieja, S., Mann, M., Spencer, T., Flick, C., Gordon-Kamm, W. (1992) Transformation of an elite maize inbred through microprojectile bombardment of regenerable embyrogenic callus. In Vitro Cell. Dev. Biol. 28, 124A

  • Golovkin, M.V., Abraham, M., Mórocz, S., Bottka, S., Fehér, A., Dudits, D. (1993) Production of transgenic maize plants by direct DNA uptake into embryogenesis protoplasts. Plant Sci. 90, 41–52

    Google Scholar 

  • Gordon-Kamm, W.J., Spencer, T.M., Mangano, M.L., Adams, T.R., Daines, R.J., Start, W.G., O'Brien, J.V., Chambers, S.A., Adams, W.R., Willetts, N.G., Rice, T.B., Mackey, C.J., Krueger, R.W., Kausch, A.P., Lemaux, P.G. (1990) Transformation of maize cells and regeneration of fertile transgenic plants. Plant Cell 2, 603–618

    Google Scholar 

  • Hodges, T.K., Kamo, K.K., Imbrie, C.W., Becwar, M.R. (1986) Genotype specificity of somatic embyrogenesis and regeneration in maize. Bio/Technology 4, 219–223

    Google Scholar 

  • Jefferson, R.A., Kavanagh, T.A., Bevan, M.W. (1987) GUS fusion: β-Glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J. 6, 3901–3907

    Google Scholar 

  • Koziel, M.G., Beland, G.L., Bowman, C., Carozzi, N.B., Crenshaw, R., Crossland, L., Dawson, J., Desai, N., Hill, M., Kadwell, S., Launis, K., Lewis, K., Maddox, D., McPherson, K., Meghji, M.R., Merlin, E., Rhodes, R., Warren, G.W., Wright, M., Evola, S.V. (1993) Field performance of elite transgenic maize plants expressing an insecticidal protein derived by Bacillus thuringiensis. Bio/Technology 11, 194–200

    Google Scholar 

  • Li, L., Qu, R., de Kochko, A., Fauquet, C., Beachy, R.N. (1993) An improved rice transformation system using the biolistic method. Plant Cell Rep. 12, 250–255

    Google Scholar 

  • Lu, C., Vasil, I.K., Ozias-Akins, P. (1982) Somatic embryogenesis in Zea mays L. Theor. Appl. Genet. 62, 102–112

    Google Scholar 

  • Lu, C., Vasil, V., Vasil, I.K. (1983) Improved efficiency of somatic embryogenesis and plant regeneration in tissue cultures of maize (Zea mays L.). Theor. Appl. Genet. 66, 285–289

    Google Scholar 

  • Mórocz, S., Donn, G., Németh, J., Dudits, D. (1990) An improved system to obtain fertile regenerants via maize protoplasts isolated from a highly embryogenic suspension culture. Theor. Appl. Genet. 80, 721–726

    Google Scholar 

  • Murry, L.E., Elliott, L.G., Capitant, S.A., West, J.A., Hanson, K.K., Scarafia, L., Johnston, S., DeLuca-Flaherty, C., Nichols, S., Cunanan, D., Dietrich, P.S., Mettler, I.J., Dewald, S., Warnick, D.A., Rhodes, C., Sinibaldi, R.M., Brunke, K.J. (1993) Transgenic corn plants expressing MDMV strain B coat protein are resistant to mixed infections of maize dwarf mosaic virus and maize chlorotic mottle virus. Bio/Technology 11, 1559–1564

    Google Scholar 

  • Novak, F.J., Dolezelova, M., Nesticky, M., Plovarci, A. (1983) Somatic embryogenesis and plant regeneration in Zea mays L. Maydica 28, 381–390

    Google Scholar 

  • Omirulleh, S., Ábrahám, M., Golovkin, M., Stefanov, I., Karabaev, M.K., Mustárdy, L., Mórocz, S., Dudits, D. (1993) Activity of a chimeric promoter with the doubled CaMV 35S enhancer element in protoplast-derived cells and transgenic plants in maize. Plant Mol. Biol. 21, 415–428

    Google Scholar 

  • Pescitelli, S.M., Mitchell, J.C., Jones, A.M., Pareddy, D.R., Petolino, J.F. (1989) High frequency androgenesis from isolated microspores of maize. Plant Cell Rep. 7, 673–676

    Google Scholar 

  • Petolino, J.F., Thompson, S.A. (1987) Genetic analysis of anther culture response in maize. Theor. Appl. Genet. 74, 284–286

    Google Scholar 

  • Southern, E.M. (1975) Detection of specific sequences among DNA fragments separated by gel electrophoresis. J. Mol. Biol. 98, 503–517

    Google Scholar 

  • Spencer, T.M., Gordon-Kamm, W.J., Daines, R.J., Start, W.G., Lemaux, P.G. (1990) Bialaphos selection of stable transformations from maize cell culture. Theor. Appl. Genet. 79, 625–631

    Google Scholar 

  • Thompson, C.J., Novva, N.R., Tizard, R., Crameri, R., Davies, J.E., Lauwereys, M., Botterman, J. (1987) Characterization of the herbicide-resistance gene bar from Streptomyces hygroscopicus. EMBO J. 6, 2519–2523

    Google Scholar 

  • Tomes, D.T., Smith, O.S. (1985) The effect of parental genotype on initiation of embryogenic callus from elite maize (Zea mays L.) germplasm. Theor. Appl. Genet. 70, 505–509

    Google Scholar 

  • Vain, P., McMullen, M.D., Finer, J.J. (1993) Osmotic treatment enhances particle bombardment-mediated transient and stable transformation of maize. Plant Cell Rep. 12, 84–88

    Google Scholar 

  • Vasil, V., Srivastava, V., Castillo, A.M., Fromm, M.E., Vasil, I.K. (1993) Rapid production of transgenic wheat plants by direct bombardment of cultured immature embryos. Bio/Technology 11, 1553–1558

    Google Scholar 

  • Walters, D.A., Vetsch, C.S., Potts, D.E., Lundquist, R.C. (1992) Transformation and inheritance of a hygromycin phosphotrans ferase gene in maize plants. Plant Mol. Biol. 18, 189–200

    Google Scholar 

  • Wan, Y., Lemaux, P.G. (1994a) Generation of large numbers of independently transformed fertile barley plants. Plant Physiol. 104, 37–48

    Google Scholar 

  • Wan, Y., Lemaux, P.G. (1994b) Biolistic transformation of microspore-derived and immature zygotic embryos and regeneration of fertile transgenic barley plants. In: Gene transfer to plants, Potrykus, I., Spangenberg, G., eds. Springer-Verlag, Heidelberg, in press

    Google Scholar 

  • Wan, Y., Widholm, J.M. (1993) Anther culture of maize. In: Plant breeding reviews, pp. 199–224, Janick, J., ed. J. Wiley & Sons, New York

    Google Scholar 

  • Wan, Y., Petolino, J.F., Widholm, J.M. (1989) Efficient production of doubled haploid plants through colchicine treatment of antherderived maize callus. Theor. Appl. Genet. 77, 889–892

    Google Scholar 

  • Wan, Y., Duncan, D.R., Rayburn, A.L., Petolino, J.F., Widholm, J.M. (1991) The use of antimicrotubule herbicides for the production of doubled haploid plants from anther-derived maize callus. Theor. App. Genet. 81, 205–211

    Google Scholar 

  • Wan, Y., Rocheford, T.R., Widholm, J.M. (1992) RFLP analysis to identify putative chromosomal regions involved in the anther culture response and callus formation of maize. Theor. Appl. Genet. 85, 360–365

    Google Scholar 

  • Weeks, J.T., Anderson, O.D., Blechl, A.E. (1993) Rapid production of multiple independent lines of fertile transgenic wheat (Triticum aestivum). Plant Physiol. 102, 1077–1084

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuechun Wan.

Additional information

The authors thank Dr. P.H. Quail, Plant Gene Expression Center, for the plasmid pAHC25, Meija Seika Kaisha, Ltd. for bialaphos, D. Hantz and B. Lamb for care of transgenic plants, and R. Wells for help with the manuscript. This work was supported by funds from the Coors Brewing Company, the U.C. Berkeley — USDA/ARS Plant Gene Expression Center, the University of California Cooperative Extension Service, the Illinois Agricultural Experiment Station and DowElanco/United Agri-Seeds.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wan, Y., Widholm, J.M. & Lemaux, P.G. Type I callus as a bombardment target for generating fertile transgenic maize (Zea mays L.). Planta 196, 7–14 (1995). https://doi.org/10.1007/BF00193211

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00193211

Key words

Navigation