Skip to main content
Log in

Distribution of glucose/mannose-specific isolectins in pea (Pisum sativum L.) seedlings

  • Published:
Planta Aims and scope Submit manuscript

Abstract

We report on the distribution and initial characterization of glucose/mannose-specific isolectins of 4- and 7-d-old pea (Pisum sativum L.) seedlings grown with or without nitrate supply. Particular attention was payed to root lectin, which probably functions as a determinant of host-plant specificity during the infection of pea roots by Rhizobium leguminosarum bv. viciae. A pair of seedling cotyledons yielded 545±49 μg of affinity-purified lectin, approx. 25% more lectin than did dry seeds. Shoots and roots of 4-d-old seedlings contained 100-fold less lectin than cotyledons, whereas only traces of lectin could be found in shoots and roots from 7-d-old seedlings. Polypeptides with a subunit structure similar to the precursor of the pea seed lectin could be demonstrated in cotyledons, shoots and roots. Chromatofocusing and isoelectric focusing showed that seed and non-seed isolectin differ in composition. An isolectin with an isoelectric point at pH 7.2 appeared to be a typical pea seed isolectin, whereas an isolectin focusing at pH 6.1 was the major non-seed lectin. The latter isolectin was also found in root cell-wall extracts, detached root hairs and root-surface washings. All non-seed isolectins were cross-reactive with rabbit antiserum raised against the seed isolectin with an isolectric point at pH 6.1. A protein similar to this acidic glucose/mannose-specific seed isolectin possibly represents the major lectin to be encountered by Rhizobium leguminosarum bv. viciae in the pea rhizosphere and at the root surface. Growth of pea seedlings in a nitrate-rich medium neither affected the distribution of isolectins nor their hemagglutination activity; however, the yield of affinity-purified root lectin was significantly reduced whereas shoot lectin yield slightly increased. Agglutination-inhibition tests demonstrated an overall similar sugar-binding specificity for pea seed and non-seed lectin. However root lectin from seedlings grown with or without nitrate supplement, and shoot lectin from nitrate-supplied seedlings showed a slightly different spectrum of sugar binding. The absorption spectra obtained by circular dichroism of seed and root lectin in the presence of a hapten also differed. These data indicate that nutritional conditions may affect the sugar-binding activity of non-seed isolectin, and that despite their similarities, seed and non-seed isolectins have different properties that may reflect tissue-specialization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

IEF:

isoelectric focusing

MW:

molecular weight

pI:

isoelectric point

Psl1, Psl2 and Psl3:

pea isolectins

SDSPAGE:

sodium dodecyl sulfate polyacrylamide gel electrophoresis

References

  • Beaven, G.G., Holliday, E.R. (1972) Ultraviolet absorption spectra of proteins and amino acids. Adv. Protein Chem. 7, 319–386

    Google Scholar 

  • Blum, H., Beier, H., Gross, H.J. (1987) Improved silver staining of plant proteins, RNA and DNA in polyacrylamide gels. Electrophoresis 8, 93–99

    CAS  Google Scholar 

  • Bohlool, B.B., Schmidt, E.L. (1974) Lectins: a possible basis for specificity in the Rhizobium-legume root nodule symbiosis. Science 185, 269–271

    Google Scholar 

  • Borrebaeck, C.A.K. (1984) Detection and characterization of a lectin from non-seed tissue of Phaseolus vulgaris. Planta 161, 223–228

    Google Scholar 

  • Buffard, D., Kaminski, P.A., Strosberg, A.D. (1988) Lectin-gene expression in pea (Pisum sativum L.) roots. Planta 173, 367–372

    Google Scholar 

  • Butcher, L.A., Tomkins, J.K. (1985) A comparison of silver staining methods for detecting proteins in ultrathin polyacrylamide gels on support film after isoelectric focusing. Anal. Biochem. 148, 384–388

    Google Scholar 

  • Christensen, T.M.I.E., Díaz, C.L., Kijne, J.W. (1986) Pea lectin binding activity of pea root extracts. In: Lectins, biology, biochemistry, clinical biochemistry, vol. 5, pp. 15–22, Bøg-Hansen, T.C., van Driessche E., eds. Walter de Gruyter, Berlin New York

    Google Scholar 

  • Dazzo, F.B., Hubbell, D.H. (1975) Cross-reactive antigens and lectin as determinants of symbiotic specificity in the Rhizobium-clover symbiosis. Appl. Microbiol. 30, 1017–1033

    Google Scholar 

  • Dazzo, F.B., Yanke, W.E., Brill, W.J. (1978) Trifoliin A, a Rhizobium recognition protein from white clover. Biochim. Biophys. Acta 539, 276–286

    Google Scholar 

  • Díaz, C.L., Lems-van Kan, P., van der Schaal, I.A.M., Kijne, J.W. (1984) Determination of pea (Pisum sativum L.) root lectin using an enzyme-linked immunoassay. Planta 161, 302–307

    Google Scholar 

  • Díaz, C.L., van Spronsen, P.C., Bakhuizen, R., Logman, G.J.J., Lugtenberg, E.J.J., Kijne, J.W. (1986) Correlation between infection by Rhizobium leguminosarum and lectin on the surface of Pisum sativum L. roots. Planta 168, 350–359

    Google Scholar 

  • Díaz, C.L., Melchers, L.S., Hooykaas, P.J.J., Lugtenberg, B.J.J., Kijne, J.W. (1989) Root lectin as a molecular determinant of host-plant specificity in the Rhizobium-legume symbiosis. Nature 338, 579–581

    Google Scholar 

  • Dobres, M., Thompson, W.F. (1989) A developmentally regulated bud specific transcript in pea has sequence similarity to seed lectins. Plant Physiol. 89, 833–838

    Google Scholar 

  • Duncan, R., Hersey, J.W.B. (1984) Evaluation of isoelectric focusing running conditions during two-dimensional isoelectric focusing/sodium dodecyl sulfate-polyacrylamide gel electrophoresis: variations of gel patterns with changing conditions and optimized isoelectric focusing conditions. Anal. Biochem. 138, 144–155

    Google Scholar 

  • Ellman, G.L. (1959) Tissue sulfidryl groups. Arch. Biochem. Biophys. 82, 70–779

    Google Scholar 

  • Entlicher, G., Kocourek, J. (1975) Studies on phytohemagglutinins. XXIV. Isoelectric point and hybridization of pea (Pisum sativum L.) isophytohemaglutinins. Biochim. Biophys. Acta 393, 165–169

    Google Scholar 

  • Etzler, M.E., Mac Millan, S., Scater, S., Gibson, D.M., James, D.W., Jr., Cole, D., Thayer, S. (1984) Subcellular localization of two Dolichos biflorus lectins. Plant Physiol. 76, 871–878

    Google Scholar 

  • Gade, W., Jack, M.A., Dahl, J.B., Schmidt, E.L., Wold, F. (1981) The isolation and characterization of a root lectin from soybean (Glycine max (L.) cultivar Chippewa). J. Biol. Chem. 256, 1205–1210

    Google Scholar 

  • Gatehouse, J.A., Boulter, D. (1980) Isolation and properties of a lectin from the roots of Pisum sativum (garden pea). Physiol. Plant. 49, 437–442

    Google Scholar 

  • Gerhold, D.L., Dazzo, F.B., Gresshoff, P.M. (1985) Selective removal of seedling root hairs for studies of the Rhizobium-legume symbiosis. J. Microbiol. Methods 4, 95–102

    Google Scholar 

  • Halverson, L.J., Stacey, G. (1985) Host recognition in the Rhizobium-soybean symbiosis. Evidence for the involvement of lectin in nodulation. Plant Physiol. 77, 621–625

    Google Scholar 

  • Halverson, L.J., Stacey, G. (1986) Effect of lectin on the nodulation by wild-type Bradyrhizobium japonicum and a nodulation defective mutant. Appl. Environ. Microbiol. 51, 753–760

    Google Scholar 

  • Higgins, T.J.V., Chandler, P.M., Zurawski, G., Button, S.C., Spencer, D. (1983a) The biosynthesis and primary structure of pea seed lectin. J. Biol. Chem. 258, 9544–9549

    Google Scholar 

  • Higgins, T.J.V., Chrispeels, M.J., Zurawski, G., Spencer, D. (1983b) Intracellular sites of synthesis and processing of lectin in developing pea cotyledons. J. Biol. Chem. 258, 9550–9552

    Google Scholar 

  • Hosselet, M., van Driessche, E., van Poucke, M., Kanarek, L. (1983) Purification and characterization of an endogenous root lectin from Pisum sativum L. In: Lectins, biology, biochemistry, clinical biochemistry, vol 3, pp. 549–558, Bøg-Hansen, T.C., Spengler, G.A., eds. Walter de Gruyter, Berlin New York

    Google Scholar 

  • Hosselet, M., van Driessche, E., van Poucke, M., Kanarek, L. (1985) The occurrence of lectin during the life-cycle of Pisum sativum L. In: Lectins, biology, biochemistry, clinical biochemistry, vol 4, pp. 583–590, Bøg-Hansen, T.C., Breborowicz, J., eds. Walter de Gruyter, Berlin New York

    Google Scholar 

  • Iyer, K.S., Klee, W. (1973) Direct spectroscopic measurement of the rate of reduction of disulfide bonds of bovine α-lactalbumin. J. Biol. Chem. 248, 707–710

    Google Scholar 

  • Kaminski, P.A., Buffard, D., Strosberg, A.D. (1987) The pea lectin gene family contains only one functional gene. Plant Mol. Biol. 9, 497–507

    Google Scholar 

  • Kijne, J.W., van der Schaal, I.A.M., de Vries, G.E. (1980) Pea lectins and the recognition of Rhizobium leguminosarum. Plant Sci Lett. 18, 65–74

    Google Scholar 

  • Kijne, J.W., Díaz, C.L., Bakhuizen, R. (1986) The physiological function of plant lectins. In: Lectins, biology, biochemistry, clinical biochemistry, vol. 5, pp. 3–14, Bøg-Hansen, T.C., van Driessche, E., eds. Walter de Gruyter, Berlin New York

    Google Scholar 

  • Kijne, J.W., Smit, G., Díaz, C.L., Lugtenberg, B.J.J. (1988) Lectin enhanced accumulation of manganese-limited Rhizobium leguminosarum cells on pea root hair tips. J. Bacteriol. 170, 2994–3000

    Google Scholar 

  • Kocourek, J., Horejsi, V. (1983) A note on the recent discussion on the definition of the term lectin. In: Lectins, biology, biochemistry, clinical biochemistry, vol. 3, pp. 3–6, Bøg-Hansen, T.C., Spengler, G.A., eds. Walter de Gruyter, Berlin New York

    Google Scholar 

  • Law, I.J., Strijdom, B.W. (1984) Properties of lectins in the root and seed of Lotononis bainesii. Plant Physiol. 74, 773–778

    Google Scholar 

  • Lugtenberg, B., Meyers, J., Peters, R., van der Hoek, P., van Alphen, L. (1975) Electrophoretic resolution of the major outer membrane protein of Escherichia coli K12 into 4 bands. FEBS Lett. 58, 254–258

    Google Scholar 

  • Marik, T., Entlicher, G., Kocourek, J. (1974) Studies on phytohemagglutinins XVI. Subunit structure of the pea isophytohemagglutinins. Biochim. Biophys. Acta 336, 53–61

    Google Scholar 

  • Pueppke, S.G., Friedman, H.P., Su, L.C. (1981) Examination of Le and lele genotypes of Glycine max (L.) Merr. for membranebound and buffer-soluble soybean lectin. Plant Physiol. 68, 905–909

    Google Scholar 

  • Quinn, J.M., Etzler, M.E. (1987) Isolation and characterization of a lectin from the roots of Dolichos biflorus. Arch. Biochem. Biophys. 258, 535–544

    Google Scholar 

  • Reinhart, M.P., Malamud, D. (1982) Protein transfer from isoelectric focusing gels: the native blot. Anal. Biochem. 123, 229–235

    Google Scholar 

  • Rougé, P., Labroue, L. (1977) Sur le rôle des phytohemagglutinines dans la fixation specifique des souches compatibles de Rhizobium leguminosarum sur le pois. C.R. Acad. Sci. Paris 284, 2423–2426

    Google Scholar 

  • Scopsi, L., Larsson, L.I. (1986) Increased sensitivity in peroxidase immunochemistry. A comparative study of a number of peroxidase visualization methods employing a model system. Histochemistry 84, 221–230

    Google Scholar 

  • Sherwood, J.E., Truchet, G.L., Dazzo, F.B. (1984) Effect of nitrate supply on the in-vivo synthesis and distribution of trifoliin, a Rhizobium trifolii-binding lectin, on Trifolium repens seedlings. Planta 162, 540–547

    Google Scholar 

  • Sluyterman, L.A.Æ. (1982) Chomatofocusing: a preparative protein separation method. TIBS 7, 168–170

    Google Scholar 

  • Thompson, A.J., Evans, M.I., Boulter, D., Croy, R.R.D., Gatehouse, J. A. (1989) Transcriptional and posttranscriptional regulation of seed storage-protein in pea (Pisum sativum L.). Planta 179, 279–287

    Google Scholar 

  • Trowbridge, I. (1974) Isolation and chemical characterization of a mitogenic lectin from Pisum sativum. J. Biol. Chem. 25, 6004–6012

    Google Scholar 

  • Van der Schaal, I.A.M. (1983) Lectins and their possible involvement in the Rhizobium-legume symbiosis. PhD thesis, Leiden University, The Netherlands

    Google Scholar 

  • Van Driessche, E. (1988) Structure and function of Leguminosae lectins. In: Advances in lectin research, vol. 1, pp.73–134, Franz H., ed. VEB Verlag Volk und Gesundheit, Berlin; Springer, Berlin Heidelberg New York

    Google Scholar 

  • Van Driessche, E., Smets, G., Dejaegere, R., Kanarek, L. (1981) The immuno-histochemical localization of pea lectin in pea seeds (Pisum sativum L.). Planta 153, 287–296

    Google Scholar 

  • Van Driessche, E., Beeckmans, S., Dejaegere, R., Kanarek, L. (1988) Isolation of the pea-lectin precursor and characterization of its processing products. In: Lectins, biology, biochemistry, clinical biochemistry, vol. 6, pp. 355–362, Leed, D.L.J., BøgHansen, T.C., eds. Sigma Chemical Co., St. Louis, Mo., USA

    Google Scholar 

  • Van Driessche, E., Beeckmans, S., Kanarek, L. (1989) Maturation of pea lectin; a comparisom with other leguminosae lectins. In: Recent advances of research in antinutritional factors in legume seeds, pp. 67–72, Huisman, J., Van der Poel, T.F.B., Liener, I.E., eds. Pudoc, Wageningen

    Google Scholar 

  • Vodkin, L.O., Raikhel, N.V. (1986) Soybean lectin and related proteins in seeds and roots of Le+ and Le soybean varieties. Plant Physiol. 81, 558–565

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

The authors wish to thank Professors L. Kanarek and M. van Poucke for helpful discussions.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Díaz, C.L., Hosselet, M., Logman, G.J.J. et al. Distribution of glucose/mannose-specific isolectins in pea (Pisum sativum L.) seedlings. Planta 181, 451–461 (1990). https://doi.org/10.1007/BF00192997

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00192997

Key words

Navigation