Skip to main content
Log in

Electric organ activation in Gymnotus carapo: Spinal origin and peripheral mechanisms

  • Original Articles
  • Published:
Journal of Comparative Physiology A Aims and scope Submit manuscript

Abstract

A new technique of multiple-air-gap recording was developed to study the EO activation process in Gymnotus carapo. Using this technique, the spatiotemporal pattern of electromotive force generation was investigated in normal and spinal-lesioned animals.

Our data indicate that the EOD may be considered as the result of the sequential activation of 3 defined portions of the EO: the abdominal portion (included in the rostral 25% of the fish body), the central portion (comprising the intermediate 50% of the fish body) and the tail portion (the caudal 25% of the fish body). The EOD generated at each portion is characterized by: 1) timing respect to the pacemaker nucleus discharge, 2) speed of progression within the region, 3) waveform, and 4) magnitude.

Spinal sections demonstrated that EMNs serving relatively small portions of the EO are widely distributed (convergence) and that surgical exclusion of relatively small portions of the spinal cord diminishes the amplitude of the EOD along an extended portion of the EO (divergence).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

EMF:

electromotive force

EMN:

electromotor-neurons

EO:

electric organ

EOD:

electric organ discharge

PMNFP:

pacemaker nucleus field potential

PEN:

posterior electromotor nerve

PNA:

peripheral neural activity

References

  • Albe-Fessard D, Buser P (1950) Etude de l'interaction par champ électrique entre deux fragments d'organe de Torpille (Torpedo marmorata). J Physiol (Paris) 42:528–529

    Google Scholar 

  • Albe-Fessard D, Martins-Ferreira H (1953) Role de la commande nerveuse dans la synchronization du fonctionnement des éléments de l'organ électrique du Gymnote, Electrophorus electricus L. J Physiol (Paris) 45:533–546

    Google Scholar 

  • Bastian J (1986) Electrolocation: behavior, anatomy and physiology. In: Bullock TH, Heiligenberg W (eds) Electroreception. John Wiley & Sons, New York, pp 577–612

    Google Scholar 

  • Bell C (1989) Sensory coding and corollary discharge effects in mormyrid electric fish. J Exp Biol 146:229–253

    Google Scholar 

  • Bell CC, Bradbury J, Russell CJ (1976) The electric organ of a mormyrid as a current and voltage source. J Comp Physiol 110:65–88

    Google Scholar 

  • Bennett MVL, Grundfest H (1959) Electrophysiology of electric organ in Gymnotus carapo. J Gen Physiol 42:1067–1104

    Google Scholar 

  • Bennett MVL, Pappas GD, Giménez M, Nakajima Y (1967) Physiology and ultrastructure of electrotonic junctions. IV. Medullary electromotor nuclei in gymnotid fish. J Neurophysiol 30:236–300

    Google Scholar 

  • Caputi A, Macadar O, Trujillo-Cenóz O (1989) Waveform generation in Gymnotus carapo. III. Analysis of the fish body as an electric source. J Comp Physiol A 165:361–370

    Google Scholar 

  • Caputi A, Silva A, Macadar O (1990) Sincronizacion del sector distal del órgano eléctrico en Gymnotus carapo. Res V Jornadas de la Sociedad Uruguaya de Biociencias. pp 82

  • Cox RT, Coates CW, Brown MV (1945) Relations between the structure, electrical characteristics and chemical processes of electric tissue. J Gen Physiol 28:187–212

    Google Scholar 

  • Donaldson PEK (1958) Electronic apparatus for biological research. Butterworth, London

    Google Scholar 

  • Fessard A (1958) Les organes électriques. In: Grasse P (ed) Traité de Zoologie, T. XIII. Masson, Paris, pp 1143–1238

    Google Scholar 

  • Lissmann HW (1951) Continuous electrical signals from the tail of a fish, Gymnarchus niloticus Cuv. Nature (Lond) 167:201–202

    Google Scholar 

  • Macadar O, Lorenzo D, Velluti JC (1989) Waveform generation of the electric organ discharge in Gymnotus carapo. II. Electrophysiological properties of single electrocytes. J Comp Physiol A 165:353–360

    Google Scholar 

  • Trujillo-Cenóz O, Echagüe JA (1989) Waveform generation of the electric organ discharge in Gymnotus carapo. I. Morphology and innervation of the electric organ. J Comp Physiol A 165:343–351

    Google Scholar 

  • Trujillo-Cenóz O, Echagüe JA, Macadar O (1984) Innervation pattern and electric organ discharge waveform in Gymnotus carapos. J Neurobiol 15:273–281

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Caputi, A., Silva, A. & Macadar, O. Electric organ activation in Gymnotus carapo: Spinal origin and peripheral mechanisms. J Comp Physiol A 173, 227–232 (1993). https://doi.org/10.1007/BF00192981

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00192981

Key words

Navigation