Skip to main content
Log in

Characterization of competent cells and early events of Agrobacterium-mediated genetic transformation in Arabidopsis thaliana

  • Published:
Planta Aims and scope Submit manuscript

Abstract

The insertion of foreign DNA in plants occurs through a complex interaction between Agrobacteria and host plant cells. The marker gene β-glucuronidase of Escherichia coli and cytological methods were used to characterize competent cells for Agrobacterium-mediated transformation, to study early cellular events of transformation, and to identify the potential host-cell barriers that limit transformation in Arabidopsis thaliana L. Heynh. In cotyledon and leaf explants, competent cells were mesophyll cells that were dedifferentiating, a process induced by wounding and-or phytohormones. The cells were located either at the cut surface or within the explant after phytohormone pretreatment. In root explants, competent cells were present in dedifferentiating pericycle, and were produced only after phytohormone pretreatment. Irrespective of their origin, the competent cells were small, isodiametric with thin primary cell walls, small and multiple vacuoles, prominent nuclei and dense cytoplasm. In both cotyledon and root explants, histological enumeration and β-glucuronidase assays showed that the number of putatively competent cells was increased by preculture treatment, indicating that cell activation and cell division following wounding were insufficient for transformation without phytohormone treatment. Exposure of explants for 48 h to A. tumefaciens produced no characteristic stress response nor any gradual loss of viability nor cell death. However, in the competent cell, association between the polysaccharide of the host cell wall and that of the bacterial filament was frequently observed, indicating that transformation required polysaccharide-to-polysaccharide contact. Flow cytofluorometry and histological analysis showed that abundant transformation required not only cell activation (an early state exhibiting an increase in nuclear protein) but also cell proliferation (which in cotyledon tissue occurred at many ploidy levels). Noncompetent cells could be made competent with the appropriate phytohormone treatments before bacterial infection: this should aid analysis of critical steps in transformation procedures and should facilitate developing new strategies to transform recalcitrant plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

BAP:

6-benzylaminopurine

BM:

basal medium

2,4-D:

2,4-dichlorophenoxyacetic acid

GUS:

β-glucuronidase

K:

kinetin

KmR :

kanamycin resistant

NAA:

naphthaleneacetic acid

PAS:

periodic acid-Schiff's

35S-GUS:

GUS marker gene driven by the promoter of cauliflower mosaic virus

T-DNA:

transferred DNA

TR-GUS:

GUS marker gene driven by TR-promoter

Referencess

  • Alizadeh, S., Mantell, S.H. (1991) Early cellular events during direct somatic embryogenesis in cotyledon explants of Solanum aviculare. Forst. Ann. Bot. 67, 257–263

    Google Scholar 

  • An, G. (1985) High efficiency transformation of cultured tobacco cells. Plant Physiol. 79, 568–570

    Google Scholar 

  • Basiran, N., Armitage, P., Scott, R.J., Draper, J. (1987) Genetic transformation of flax (Linum usitatissimum) by Agrobacterium tumefaciens: Regeneration of transformed shoots via a callus phase. Plant Cell Rep. 6, 396–399

    Google Scholar 

  • Binns, A.N. (1990) Agrobacterium-mediated gene delivery and the biology of host range limitations. Physiol. Plant. 79, 135–139

    Google Scholar 

  • Binns, A.N. (1991) Transformation of wall deficient cultured tobacco protoplasts by Agrobacterium tumefaciens. Plant Physiol. 96, 496–506

    Google Scholar 

  • Braun, A. (1954) The physiology of plant tumors. Annu. Rev. Plant Physiol. 5, 133–162

    Google Scholar 

  • Bronner, R. (1975) Simultaneous demonstration of lipids and starch in plant tissues. Stain Technol. 50, 1–4

    Google Scholar 

  • Brown, S.C., Devaux, P., Marie, D., Bergounioux, C., Petit, P.X. (1991a) Cytométrie de flux: application a l'analyse de la ploïdie chez les végétaux. Biofutur 105, 2–16

    Google Scholar 

  • Brown, S.C., Bergounioux, C., Tallet, S., Marie, D. (1991b) Flow cytometry of nuclei for ploidy and cell cycle analysis. In: A laboratory guide for cellular and molecular plant biology, pp. 326–345, Negrutiu, I., Gharti-Chhetri, G., eds. Birkhauser Verlag Basel, Switzerland

    Google Scholar 

  • Chriqui, D., David, C., Adam, S. (1988) Effect of the differentiated or dedifferentiated state of tobacco pith tissue on its behaviour after inoculation with A. rhizogenes. Plant Cell Rep. 7, 111–114

    Google Scholar 

  • Clark, G. (1984) Staining procedures. 4th ed., Williams & Wilkins, Baltimore London

    Google Scholar 

  • Deblaere, R., Bytebier, B., De Greve, H., Debock, F., Schell, J., Van Montagu, M., Leemans, J. (1985) Efficient octopine Ti plasmid-derived vectors for Agrobacterium mediated gene transfer. Nucleic Acids Res. 13, 4777–4788

    CAS  Google Scholar 

  • De Cleene, M., De Ley, J. (1976) The host range of crown gall. Bot. Rev. 42, 389–466

    Google Scholar 

  • De Rocher, E.J., Harkins, K.R., Galbraith, D.W., Bohnert, H.J. (1990) Developmentally regulated systemic endopolyploidy in succulents with small genomes. Science 250, 99–101

    Google Scholar 

  • Dong, J.Z., Yang, M.Z., Jia, S.R., Chua, N.H. (1991) Transformation of melon (Cucumis melo L.) and expression from the cauliflower mosaic virus 35S promoter in transgenic melon plants. Bio-Technology 9, 858–863

    Google Scholar 

  • Douglas, C., Halperin, W., Gordon, M., Nester, E. (1985) Specific attachmment of Agrobacterium tumefaciens to bamboo cells in suspension cultures. J. Bacteriol. 161, 764–766

    Google Scholar 

  • Draper, J., Mackenzie, I.A., Davey, M.R., Freeman, J.P. (1983) Attachment of Agrobacterium tumefaciens to mechanically isolated Asparagus cells. Plant Sci. Lett. 29, 227–236

    Google Scholar 

  • Esau, K. (1965) Plant anatomy. 2nd edn., John Wiley & Sons, New York

    Google Scholar 

  • Fowke, L.C. (1986) Ultrastructural cytology of cultured plant tissues, cells, and protoplasts. In: Cell culture and somatic cell genetics of plants, vol. 3, pp. 323–339, Vasil, I.K. ed., Academic Press Inc., Orlando, Florida

    Google Scholar 

  • Galbraith, D.W., Harkins, K.R., Maddox, J.M., Ayres, N.M., Sharma, D.P., Firoozabady, E. (1983) Rapid flow cytometric analysis of the cell cycle in intact plant tissues. Science 220, 1049–1051

    CAS  Google Scholar 

  • Gasser, C.S., Fraley, R.T. (1989) Genetically engineering plants for crop improvement. Science 244, 1293–1299

    Google Scholar 

  • Gheysen, G., Villarroel, R., Van Montagu, M. (1991) Illegitimate recombination in plants: a model for T-DNA integration. Gene Devel. 5, 287–297

    Google Scholar 

  • Halperin, W. (1986) Attainment and retention of morphogenetic capacity in vitro. In: Cell culture and somatic cell genetics of plants, vol. 3, pp. 3–37, Vasil, I.K. ed., Academic Press Inc., Orlando, Florida

    Google Scholar 

  • Hinchee, M.A.W., Connor-Ward, D.V., Newell, C.A., McDonnell, R.E., Sato, S.J., Gasser, C.S., Fischhoff, D.A., Re, D.R., Fraley, R.T., Horsch, R.B. (1988) Production of transgenic soybean plants using Agrobacterium-mediated DNA transfer. Bio-Technology 6, 915–922

    Google Scholar 

  • Hooykaas, P.J.J. (1989) Transformation of plant cells via Agrobacterium. Plant Mol. Biol. 13, 327–336

    Google Scholar 

  • Jefferson, R.A., Kavanagh, T.A., Bevan, M.W. (1987) GUS fusion: β-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J. 6, 3901–3907

    Google Scholar 

  • Jefferson, R.A. (1987) Assaying chimeric genes in plants: the GUS gene fusion system. Plant Mol. Biol. Rep. 5, 387–407

    Google Scholar 

  • Jensen, W.A. (1962) Botanical histochemistry. W.H. Freeman & Company, San Francisco

    Google Scholar 

  • Koncz, C., Olsson, O., Langridge, W.H.R., Schell, J., Szalay, A.A. (1987) Expression and functional assembly of bacterial luciferase in plansts. Proc. Natl. Acad. Sci. USA 84, 131–135

    Google Scholar 

  • Kovats, K., Binder, A., Hohl, H.R. (1991) Cytology of induced systemic resistance of Cucumber to Colletotrichum lagenarium. Planta 183, 484–490

    Google Scholar 

  • Krens, F.A., Molendijk, L., Wullems, G.J., Schilperoort, R.A. (1985) The role of bacterial attachment in the transformation of cell wall-regenerating tobacco protoplasts by Agrobacterium tumefaciens. Planta 166, 300–308

    Google Scholar 

  • Leemans, J., Deblaere, R., Willmitzer, L., De Greve, H., Hernalsteens, J.P., Van Montagu, M. (1982) Genetic identification of function of TL-transcripts in octopine crown gall. EMBO J. 1, 147–152

    Google Scholar 

  • Lida, A., Yamashita, T., Yamada, Y., Morikawa, H. (1991) Efficiency of particle-bombardement-mediated transformation is influenced by cell cycle stage in synchronized cultured cells of tobacco. Plant Physiol. 97, 1585–1587

    Google Scholar 

  • Lippincott, J.A., Lippincott, B. (1980) Microbial adherence in plants. In: Receptors and recognition. Ser. B, Vol. 6: Bacterial adherence, pp. 376–398, Beachey, E.W. ed., Chapman & Hall, London

    Google Scholar 

  • Matthysse, A.G. (1987) Initial interactions of Agrobacterium tumefaciens with plant host cell. Crit. Rev. Microbiol. 13, 281–307

    Google Scholar 

  • Mayerhofer, R., Koncz-Lalman, Z., Nawrath, C., Bakkeren, G., Crameri, A., Angelis, K., Redei, G.P., Schell, J., Hohn, B., Koncz, C. (1990) T-DNA integration: a mode of illegitimate recombination in plants. EMBO J. 10, 697–704

    Google Scholar 

  • Miller, J.H., ed. (1972) Experiments in molecular genetics. Cold spring Harbor Lab. Press, Cold Spring Harbor, New York

    Google Scholar 

  • Meyerowitz, E.M. (1987) Arabidopsis thaliana. Annu. Rev. Genet. 21, 93–111

    CAS  PubMed  Google Scholar 

  • Murashige, T., Skoog, F. (1962) A revised medium for rapid growth and bioassays with tobacco tissue culture. Physiol. Plant. 15, 473–497

    Google Scholar 

  • Nagata, Z., Okada, K., Takebe, I. (1986) Strong dependency of the transformation of plant protoplasts on cell cycle. In: Fallen Leaf Lake conference on Agrobacterium and crown gall. pp. 9, Kado, C. ed., University of California, Davis, U.S.A.

    Google Scholar 

  • Neff, N.T., Binns, A.N., Brandt, C. (1987) Inhibitory effects of a pectin-enriched tomato cell wall fraction on Agrobacterium tumefaciens binding and tumor formation. Plant Physiol. 83, 525–528

    Google Scholar 

  • Nitsch, J.P., Nitsch, C. (1965) Néoformation de fleurs in vitro chez une espèce de jours courts Plumbago indica L. Ann. Physiol. Vég. 7, 251–258

    Google Scholar 

  • Ow, D.W., Wood, K.V., Deluca, M., Dewet, J.R., Helinski, D.R., Howell, S.H. (1986) Transient and stable expression of the firefly luciferase gene in plant cells and transgenic plants. Science 234, 856–859

    Google Scholar 

  • Potrykus, I. (1990) Gene transfer to cereals: An assessment. Biotechnology 8, 535–542

    Google Scholar 

  • Rayle, D.L., Cleland, R. (1977) Control of plant cell enlargement by hydrogen ions. Curr. Top. Devel. Biol. 11, 187–214

    Google Scholar 

  • Robinette, D., Matthysse, A.G. (1990) Inhibition by Agrobacterium tumefaciens and Pseudomonas savastanoi of development of the hypersensitive response elicited by Pseudomonas syringae pv. phoseolicota. J. Bacteriol. 172, 5742–5749

    Google Scholar 

  • Sangwan, R.S., Sangwan-Norreel, B.S. (1987) Biochemical cytology of pollen embryogenesis. Int. Rev. Cytol. 107, 221–272

    Google Scholar 

  • Sangwan, R.S., Bourgeois, Y., Sangwan-Norreel, B.S. (1991) Genetic transformation of Arabidopsis thaliana zygotic embryos and identification of critical parameters influencing transformation efficiency. Mol. Gen. Genet. 230, 475–485

    Google Scholar 

  • Schell, J. (1987) Transgenic plants as tool to study the molecular organization of plant genes. Science 237, 1176–1183

    Google Scholar 

  • Schmidt, R., Willmitzer, L. (1988) High efficiency Agrobacterium tumefaciens-mediated transformatin of Arabidopsis thaliana leaf and cotyledons explants. Plant Cell Rep. 7, 583–586

    Google Scholar 

  • Sgorbati, S., Sparvoli, E., Levi, M., Chiatante, D. (1989) Bivariate cytofluorimetric analysis of nuclear protein and DNA relative to cell kinetics during germination of Pisum sativum seed. Physiol. Plant. 75, 479–484

    Google Scholar 

  • Sheikholeslam, S.N., Weeks, D.P. (1987) Acetosyringone promotes high efficiency transformation of Arabidopsis thaliana explants by Agrobacterium tumefaciens. Plant Mol. Biol. 8, 291–298

    Google Scholar 

  • Silcock, D.J., Francis, D., Bryant, J.A., Hughes, S.G. (1990) Changes in nuclear DNA content, cell and nuclear size, and frequency of cell division in the cotyledons of Brassica napus L. during embryogenesis. J. Exp. Bot. 41, 401–407

    Google Scholar 

  • Somerville, C. (1989) Arabidopsis blooms. Plant Cell. 1, 1131–1135

    Google Scholar 

  • Stachel, S.E., Messens, E., Van Montagu, M., Zambryski, P. (1985) Identification of the signal molecules produced by wounded plant cells that activate T-DNA transfer in Agrobacterium tumefaciens. Nature 318, 624–629

    Google Scholar 

  • Stachel, S.E., Zambryski, P.C. (1989) Generic trans-kingdom sex. Nature 340, 190–191

    Google Scholar 

  • Teeri, T.H., Lehväslaiko, H., Franck, M., Uotila, J., Heino, P., Palva, E.T., Van Montagu, M., Herrera-Estrella, L. (1989) Gene fusion to lac Z reveals new expression patterns of chimeric genes in transgenic plants. EMBO J. 8, 343–350

    Google Scholar 

  • Thiéry, J.P. (1967) Mise en évidence des polysaccharides sur coupes fines en microscopie électronique. J. Microsc. 6, 987–1018

    Google Scholar 

  • Thomashow, M.F., Karlinsky, J.E., Marks, J.R., Hurlbert, R.E. (1987) Identification of a new virulence locus in Agrobacterium tumefaciens that affects polysaccharide composition and plant cell attachment. J. Bacteriol. 169, 3209–3216

    Google Scholar 

  • Valvekens, D., Van Montagu, M., Van Lijebettens, M. (1988) Agrobacterium tumefaciens-mediated transformation of Arabidopsis thaliana root explants by using kanamycin selection. Proc. Natl. Acad. Sci. USA 85, 5536–5540

    Google Scholar 

  • Vancanneyt, G., Schmidt, R., O'Connor-Sanchez, A., Willmitzer, L., Rocha-Sosa, M. (1990) Construction of an intron-containing marker gene: splicing of the intron in transgenic plants and its use in monitoring early events in Agrobacterium-mediated plant transformation. Mol. Gen. Genet. 220, 245–250

    Google Scholar 

  • Velten, J., Schell, J. (1985) Selection-expression plasmid for use in genetic transformation of higher plants. Nucleic Acid Res. 13, 6981–6998

    Google Scholar 

  • Weising, K., Schell, J., Kahl, G. (1988) Foreign genes in plants: transfer, structure, expression, and application. Annu. Rev. Genet. 22, 421–477

    Google Scholar 

  • Zambryski, P. (1988) Basic process underlying Agrobacterium- mediated DNA transfer to plants cells. Annu. Rev. Genet. 22, 1–30

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Dedicated to the memory of Professor H. Camefort

We thank Drs. M. Van Montagu (Laboratory of Genetics, State University, Gent, Belgium), J. Leemans (Plant Genetic systems, Gent, Belgium), D.P.S. Verma (Biotechnology Centre, Ohio State University, Columbus, USA) and L. Willmitzer (Institut für Gen-biologische Forschung, Berlin, FRG) for generous gifts of plas-mids; Drs. V. Raghavan (Department of Plant Biology, Ohio State University), E. Zyprian (Laboratoire AEB, Université de Picardie Jules Verne), B. Gronenborn and J. Leung (Institut des Sciences Végétales, CNRS) for discussion, and Dr. B. Ahloowalia (Kinsealy Research Center, Dublin, Ireland) for critical reading the manuscript. We also express thanks to D. Marie (Institut des Sciences Végétales, CNRS) for performing numerous flow-cytometric analyses and M. Poiret for technical assistance.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sangwan, R.S., Bourgeois, Y., Brown, S. et al. Characterization of competent cells and early events of Agrobacterium-mediated genetic transformation in Arabidopsis thaliana . Planta 188, 439–456 (1992). https://doi.org/10.1007/BF00192812

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00192812

Key words

Navigation