Skip to main content
Log in

1H NMR investigation of the secondary structure, tertiary contacts and cluster environment of the four-iron ferredoxin from the hyperthermophilic archaeon Thermococcus litoralis

  • Research Papers
  • Published:
Journal of Biomolecular NMR Aims and scope Submit manuscript

Summary

The solution molecular structure of the four-iron ferredoxin (Fd) from the hyperthermophilic archaeon Thermococcus litoralis (Tl) has been investigated by 1H NMR spectroscopy. TOCSY and NOESY experiments in H2O, tailored to detect both weakly and strongly relaxed resonances, together with steady-state NOEs in both H2O and D2O, allowed the identification of 58 of the 59 residues, with one residue near the paramagnetic center undetected. It is shown that the contact shifted and strongly relaxed signals for all four cysteines ligated to the paramagnetic cluster can be assigned by standard backbone connectivities that do not require any assumptions about the tertiary structure. Secondary structural elements identified in Tl Fd are a three-stranded antiparallel β-strand involving the termini of the protein, a double β-strand (also antiparallel), two α-helices and four turns. The existence of a disulfide bridge between the nonligated cysteines is also proposed. Dipolar contacts observed in the NOESY maps and by steady-state NOEs between the ligated cysteines and the ‘diamagnetic’ protein matrix indicate that the overall folding pattern of Tl Fd is very similar to that of the 3Fe ferredoxin from the mesophilic bacterium Desulfovibrio gigas [Kissinger et al. (1991) J. Mol. Biol., 219, 693–723]. The influence of the paramagnetism of the cluster on the relaxation properties of the proton signals of nonligated residues near the cluster, as well as on the ligated cysteines, correlates well with the proximity to the cluster iron(s), as predicted from the crystal structures for homologous protons of other single-cluster ferredoxins. Finally, the potential role of the various identified structural factors in contributing to the hyperthermostability of this protein is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

Fd:

ferredoxin

HiPiP:

high-potential iron-sulfur proteins

Dg :

Desulfovibrio gigas

Av :

Azotobacter vinelandii

Pf :

Pyrococcus furiosus

Tl :

Thermococcus litoralis

Pa :

Peptostreptococcus asaccharolyticus

Bt :

Bacillus thermoproteolyticus

Cp :

Clostridium pasteurianum

Ca :

Clostridium acidi urici

Da :

Desulfovibrio africanus

Tm :

Thermatoga maritima

NOE:

nuclear Overhauser effect

NOESY:

2D NOE spectroscopy

MCOSY:

2D magnitude correlation spectroscopy

TOCSY:

total correlation spectroscopy

References

  • Adman, E.T., Sieker, L.C. and Jensen, L.H. (1976) J. Biol. Chem., 251, 3801–3806.

    Google Scholar 

  • Backes, G., Mino, Y., Loehr, T.M., Meyer, T.E., Cusanovich, M.A., Sweeney, W.V., Adman, E.T. and Sanders-Loehr, J. (1991) J. Am. Chem. Soc., 113, 2055–2064.

    Google Scholar 

  • Banci, L., Bertini, I. and Luchinat, C. (1991) Nuclear and Electronic Relaxation, VCH Publishers, Weinheim, pp. 143–155.

    Google Scholar 

  • Bax, A. and Davis, D.G. (1985) J. Magn. Reson., 65, 355–360.

    Google Scholar 

  • Beinert, H. (1990) FASEB J., 4, 2483–2491.

    Google Scholar 

  • Bertini, I., Capozzi, F., Luchinat, C. and Vila, A.J. (1994) J. Am. Chem. Soc., 116, 651–660.

    Google Scholar 

  • Blake, P.R., Park, J.-B., Zhou, Z.H., Hare, D.R., Adams, M.W.W. and Summers, M.F. (1992) Protein Sci., 1, 1508–1521.

    Google Scholar 

  • Busse, S.C., La, Mar, G.N., Yu, L.P., Howard, J.B., Smith, E.T., Zhou, Z.H. and Adams, M.W.W. (1992) Biochemistry, 31, 11952–11962.

    Google Scholar 

  • Cammack, R. (1992) Adv. Inorg. Chem., 38, 281–322.

    Google Scholar 

  • Cammack, R., Dickson, D. and Johnson, C. (1977) In Iron Sulfur Proteins (Ed., Lovenberg, W.), Academic Press, New York, NY, pp. 283–330.

  • Cavanagh, J. and Rance, M. (1990) J. Magn. Reson., 88, 72–85.

    Google Scholar 

  • Conover, R.C., Kowal, A.T., Fu, W., Park, J.-B., Aono, S., Adams, M.W.W. and Johnson, M.K. (1990) J. Biol. Chem., 265, 8533.

    Google Scholar 

  • Day, M.W., Hsu, B.T., Joshua-Tor, L., Park, J.-B., Zhou, Z.H., Adams, M.W.W. and Rees, D.C. (1992) Protein Sci., 1, 1494–1507.

    Google Scholar 

  • Donaire, A., Gorst, C.M., Zhou, Z.H., Adams, M.W.W. and La, Mar, G.N. (1994) J. Am. Chem. Soc., 116, 6841–6849.

    Google Scholar 

  • Duie, E.D., Fanchon, E., Vicat, J., Sieker, L.C., Meyer, J. and Moulis, J.-M. (1994) J. Mol. Biol., 243, 683–695.

    Google Scholar 

  • Fukuyama, K., Nagahara, Y., Tsukihara, T. and Katsube, Y. (1988) J. Mol. Biol., 199, 183–193.

    Google Scholar 

  • Fukuyama, K., Matsubara, H., Tsukihara, T. and Katsube, Y. (1989) J. Mol. Biol., 210, 383–398.

    Google Scholar 

  • Gorst, C.M., Yeh, T., Teng, Q., Calzolai, L., Zhou, J.H., Adams, M.W.W. and La, Mar, G.N. (1995a) Biochemistry, 34, 600–610.

    Google Scholar 

  • Gorst, C.M., Zhou, Z.-H., Ma, K., Teng, Q., Howard, J.B., Adams, M.W.W. and La, Mar, G.N. (1995b) Biochemistry, 34, 8788–8795.

    Google Scholar 

  • Howard, J.B. and Rees, D.C. (1991) Adv. Protein Chem., 42, 199–281.

    Google Scholar 

  • Inubushi, T. and Becker, E.D. (1983) J. Magn. Reson., 51, 128–133.

    Google Scholar 

  • Jeener, J., Meier, B.H., Bachmann, P. and Ernst, R.R. (1975) J. Chem. Phys., 71, 4546–4553.

    Google Scholar 

  • Kissinger, C.R., Sieker, L.C., Adman, E.T. and Jensen, L.H. (1991) J. Mol. Biol., 219, 693–723.

    Google Scholar 

  • La, Mar, G.N. and de Ropp, J.S. (1993) In Biological Magnetic Resonance, Vol. 12 (Eds, Berliner, L.J. and Reuben, J.), Plenum Press, New York, NY, pp. 1–78.

  • Luchinat, C. and Ciurli, S. (1993) In Biological Magnetic Resonance, Vol. 12 (Eds, Berliner, L.J. and Reuben, R.), Plenum Press, New York, NY, pp. 357–420.

  • Macedo, A.L., Moura, I., Surerus, K.K., Papaefthymiou, V., Liu, M.-Y., LeGall, J., Munk, E. and Moura, J.J.G. (1994) J. Biol. Chem., 369, 8052–8058.

    Google Scholar 

  • Mukund, S. and Adams, M.W.W. (1993) J. Biol. Chem., 268, 13592–13600.

    Google Scholar 

  • Poe, M., Phillips, W.D., McDonald, C.C. and Lovenberg, W. (1970) Proc. Natl. Acad. Sci. USA, 65, 797–804.

    Google Scholar 

  • Sery, A., Housset, D., Serre, L., Bonicel, J., Hatchikian, C., Frey, M. and Roth, M. (1994) Biochemistry, 33, 15408–15417.

    Google Scholar 

  • Shaka, A.J., Keeler, J. and Freeman, R. (1983) J. Magn. Reson., 53, 313–340.

    Google Scholar 

  • Sklenář, V. and Bax, A. (1987) J. Magn. Reson., 74, 469–479.

    Google Scholar 

  • Stout, C.D. (1989) J. Biol. Chem., 263, 9256–9266.

    Google Scholar 

  • Teng, Q., Zhou, Z.H., Smith, E.T., Busse, S.C., Howard, J.B., Adams, M.W.W. and La Mar, G.N. (1994) Biochemistry, 33, 6316–6326.

    Google Scholar 

  • Wildegger, G., Bentrop, D., Ejchart, A., Alber, M., Hage, A., Sterner, R. and Rösch, P. (1995) Eur. J. Biochem., 229, 658–668.

    Google Scholar 

  • Wishart, D.S., Sykes, B.D. and Richards, F.M. (1991) J. Mol. Biol., 222, 311–333.

    Google Scholar 

  • Wüthrich, K. (1986) NMR of Proteins and Nucleic Acids, Wiley, New York, NY.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

To whom correspondence should be addressed.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Donaire, A., Zhou, ZH., Adams, M.W.W. et al. 1H NMR investigation of the secondary structure, tertiary contacts and cluster environment of the four-iron ferredoxin from the hyperthermophilic archaeon Thermococcus litoralis . J Biomol NMR 7, 35–47 (1996). https://doi.org/10.1007/BF00190455

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00190455

Keywords

Navigation