Skip to main content
Log in

Microscopic analysis of autograft bone applied at the interface of porous-coated devices in human cancellous bone

  • Published:
International Orthopaedics Aims and scope Submit manuscript

Summary

This study describes the response of human cancellous bone when autologous bone chips are added at operation to the interface between host bone and porous-coated implants. During the first operation of a staged bilateral total knee arthroplasty, seven patients consented to have paired porous-coated devices implanted into their opposite medial femoral condyle. One device of each pair had autologous bone chips applied to the porous-coating, and the other was not grafted and was a control. The devices were removed en bloc at the second total knee arthroplasty 6 to 49 weeks later. Backscattered electron imaging showed significantly more bone (p≤0.05) in the porous-coating of the implant treated with autologous bone chips which significantly increased (p≤0.05) the amount of bone available at the interface. The grafted devices had a mineral apposition rate of 1.04±0.20 μm/day for the interface and 0.81±0.09 μm/day for the peripheral bone. This compared with corresponding figures of 1.03±0.38 μm/day and 0.79±0.19 μm/day at the ungrafted devices. The mineral apposition rate at the interface of the porous-coated implants was significantly increased (p≤0.05) relative to the host bone in the periphery. Our results support the view that autologous bone chips are effective in attaching cementless porous-coated total knee replacements to the human skeleton by bone ingrowth.

Résumé

Nous avons étudié la réponse de l'os spongieux humain et le taux de remodelage osseux aprés insertion chirurgicale de copeaux d'os autologue (COA) à l'interface entre os et implants poreux. Au cours du premier temps d'une arthroplastie totale bilatérale du genous, nous avons implanté, chez 7 malades consentants, deux dispositifs à revêtement poreux dans le condyle interne du fémur opposé. L'un a été recouvert de COA avant d'être mis en place, l'autre a été placé tel quel pour servir de contrôle. Ces dispositifs ont été explantés en bloc avec l'os avoisinant lors de la deuxième arthroplastie, 6 à 49 semaines après leur insertion. Les études en microscopie électronique ont montré une augmentation significative (p≤0.05) de la quantité d'os sur la surface poreuse recouverte de COA. Le taux d'apposition minérale (TAM) moyen était de 1,04±0,20 μm/jour à l'interface et de 0,81±0,09 μm/jour au niveau de l'os spongieux adjacent. Pour les implants non greffés le TAM était de 1,03±0,38 μm/jour à l'interface et de 0,79±0,19 μm/jour au niveau du spongieux périphèrique. Le TAM à l'interface des implants à revêtement poreux est significativement augmenté (p±0.05) par rapport à l'os receveur avoisinant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bloebaum RD, Bachus KN, Boyce TM (1990) Backscattered electron imaging: The role in calcified tissue and implant analysis. J Biomater Appl 5: 56–85

    Google Scholar 

  2. Bloebaum RD, Campbell PA, Reid S, Dorr L (1987) BSE imaging analysis of retrieved clinical prostheses. Trans Soc Biomat 10: 16

    Google Scholar 

  3. Bloebaum RD, Hofmann AA, Rubman MH (1991) Bone ingrowth into porous coated tibial components implanted with autograft bone chips: Analysis of eight consecutively retrieved implants. Trans Soc Biomat XIV: 99

    Google Scholar 

  4. Bloebaum RD, Rhodes DM, Rubman MH, Hofmann AA (1991) Bilateral tibial components of different cementless design and materials: Microradiographic, backscattered imaging, and histologic analysis. Clin Orthop 268: 179–187

    Google Scholar 

  5. Bloebaum RD, Rubman MH, Hofmann AA (1992) Bone ingrowth into porous coated tibial components implanted with autograft bone chips: Analysis of ten consecutively retrieved implants. J Arthroplasty (Accepted for publication)

  6. Bloebaum RD, Sanderson C, MacCarvill S, Campbell P (1989) Plastic slides in the preparation of implant and tissue for interface analysis. J Histotechnol 12: 307–310

    Google Scholar 

  7. Bobyn JD, Cameron HU, Abdulla D, Pilliar RM, Weatherly GC (1982) Biologic fixation and bone modeling with an unconstrained canine total knee prosthesis. Clin Orthop 166: 301–312

    Google Scholar 

  8. Bobyn JD, Pilliar RM, Cameron HU, Weatherly GC (1981) Osteogenic phenomena across endosteal bone-implant spaces with porous surfaced intramedullary implants. Acta Orthop Scand 52: 145–153

    Google Scholar 

  9. Boyce T, Bloebaum R, Bachus K, Skedros J (1990) Calibration of the backscattered electron signal for bone, biomaterial, and implant research. Trans Soc Biomat XIII: 188

    Google Scholar 

  10. Boyce TM, Bloebaum RD, Bachus KN, Skedros JG (1990) Reproducible method for calibrating the backscattered electron signal for quantitative assessment of mineral content in bone. Scan Micro 4: 591–603

    Google Scholar 

  11. Cameron H (1982) The results of early clinical trials with a microporous coated metal hip prosthesis. Clin Orthop 165: 188–190

    Google Scholar 

  12. Cameron HU, Pilliar RM, Macnab I (1973) The effect of movement on the bonding of porous metal to bone. J Biomed Mater Res 7: 301–311

    Google Scholar 

  13. Carlsson L, Rostlund T, Albrektsson B, Albrektsson T (1988) Implant fixation improved by close fit. Cylindrical implant — bone interface studied in rabbits. Acta Orthop Scand 59: 272–275

    Google Scholar 

  14. Chen P-Q, Turner TM, Ronningen H, Galante J, Urban R, Rostoker W (1983) A canine cementless total hip prosthesis model. Clin Orthop 176: 24–33

    Google Scholar 

  15. Clark RAF (1989) Wound repair. Cell Biol 1: 1000–1008

    Google Scholar 

  16. Collier JP, Mayor MB, Chae JC, Surprenant VA, Surprenant HP, Dauphinais LA (1988) Macroscopic and microscopic evidence of prosthetic fixation with porous-coated materials. Clin Orthop 235: 173–180

    Google Scholar 

  17. Collier JP, Mayor MM, Engh CA (1984) Bone ingrowth of porous-coated Moore prosthesis. Trans Soc Biomater 7: 113

    Google Scholar 

  18. Collier JP, Mayor MM, Townley CO, Fenning JB, Buechel FF (1986) Histology of retrieved porous-coated knee prosthesis. Am Acad Orthop Surgeons 53: 41

    Google Scholar 

  19. Cook SC, Barrack RL, Thomas KA, Haddad RJ Jr (1988) Quantitative analysis of tissue growth into human porous total hip components. J Arthroplasty 3: 249–262

    Google Scholar 

  20. Cook SD, Scheller AD, Anderson RC, Haddad RJ Jr (1986) Histologic and microradiographic analysis of a revised porous-coated anatomic (PCA) patellar component. Clin Orthop 202: 147–151

    Google Scholar 

  21. Cook SD, Thomas KA, Haddad RJ Jr (1988) Histologic analysis of retrieved human porous-coated total joint components. Clin Orthop 234: 90–101

    Google Scholar 

  22. Devore JL (1982) The Wilcoxon signed-rank test. In: Probability and statistics for engineering and the sciences. Brooks/Cole, Moneterey, CA, pp. 573–581

    Google Scholar 

  23. Dorr LD, Bloebaum R, Emmanual J, Meldrum R (1990) Histological, biochemical and ion analysis of tissue and fluids retrieved during total hip arthroplasty. Clin Orthop 261: 82–94

    Google Scholar 

  24. Emmanual J, Hornbeck C, Bloebaum RD (1987) A polymethyl methacrylate method for large specimens of mineralized bone with implants. Stain Technol 62: 401–410

    Google Scholar 

  25. Engh CA, Bobyn JD (1984) Biological fixation of poroussurface hip prostheses-clinical evaluation of adaptive femoral bone remodeling. Trans Soc Biomat 7: 70

    Google Scholar 

  26. Engh CA, Bobyn JD, Glassman AH (1987) Porous-coated hip replacement. The factors governing bone ingrowth, stress shielding, and clinical results. J Bone Joint Surg [Br] 69: 45–55

    Google Scholar 

  27. Engh CA, Bobyn JD, Gorski JM (1984) Biological fixation of a modified Moore prosthesis. Orthopedics 7: 285–298

    Google Scholar 

  28. Frost HM (1983) Bone histomorphometry: analysis of trabecular bone dynamics. In: Bone histomorphometry: techniques and interpretation. CRC Press, Boca Raton, pp 109–131

    Google Scholar 

  29. Galante J, Rostoker W (1973) Fiber metal composites in the fixation of skeletal prosthesis. J Biomed Mater Res 4: 43–61

    Google Scholar 

  30. Galante J, Rostoker W, Lueck R, Ray RD (1971) Sintered fiber metal composites as a basis for attachment of implants to bone. J Bone Joint Surg [Am] 53: 101–114

    Google Scholar 

  31. Hainau B, Reimann I, Dorph S, Rechnagel K, Henschel A, Kragh F (1989) Porous coated knee arthroplasty: a case report concerning bone ingrowth. Clin Orthop 239: 178–184

    Google Scholar 

  32. Harris WH, Jasty M (1985) Bone ingrowth into porous coated canine acetabular replacements: the effect of por size, apposition, and dislocation. In: The hip. Mosby, St Louis, pp 214–234

    Google Scholar 

  33. Harris WH, White RE Jr, McCarthy JC, Walker PS, Weinberg EH (1983) Bony ingrowth fixation of the acetabular component in canine hip joint arthroplasty. Clin Orthop 176: 7–11

    Google Scholar 

  34. Hedley AK, Clarke IC, Kozinn SC, Coster I, Gruen T, Amstutz HC (1982) Porous ingrowth fixation of the femoral component in a canine surface replacement of the hip. Clin Orthop 163: 300–311

    Google Scholar 

  35. Hedley AK, Kabo M, Kim W, Coster I, Amstutz HC (1983) Bony ingrowth fixation of newly designed acetabular components in a canine model. Clin Orthop 176: 12–23

    Google Scholar 

  36. Hofmann AA, Bloebaum RD (1989) Bone chip incorporation in porous coated total knee replacement. Trans Orthop Res Soc 14: 553

    Google Scholar 

  37. Hofmann AA, Rubman MH, Bloebaum RD, Bachus KN (1991) Effect of autograft bone chips applied at the bone/implant interface of porous coated devices in human cancellous bone. Trans Orthop Res Soc 16: 546

    Google Scholar 

  38. Hungerford DS, Kenna RV (1983) Preliminary experience with a total knee prosthesis with porous coating used without cement. Clin Orthop 176: 95–107

    Google Scholar 

  39. Hungerford DS, Krackow KA (1985) Total joint arthroplasty of the knee. Clin Orthop 192: 23–33

    Google Scholar 

  40. Jasty M, McGraw W, Rubash HE, Paiement G, Bragdon C, Harris WH (1987) Comparison of bone ingrowth into cobaltchrome spheres and titanium fibermesh coatings on canine cementless acetabular components. Trans Orthop Res Soc 12: 433

    Google Scholar 

  41. Kang JD, McKernan DJ, Kruger M, Mutscheler T, Thompson WH, Rubash HE (1991) Ingrowth and formation of bone in defects in an uncemented fiber-metal total hip replacement model in dogs. J Bone Joint Surg [Am] 73A: 93–104

    Google Scholar 

  42. Kimmel DB, Jee WSS (1982) A quantitative histologic study of bone turnover in young adult beagles. Anat Rec 203: 31–45

    Google Scholar 

  43. Landon G, Galante J, Maley M (1986) Noncemented total knee arthroplasty. Clin Orthop 205: 49–57

    Google Scholar 

  44. Lee W, Marshall J, Sissons H (1965) Calcium accretion and bone formation in dogs. An experimental comparison between the results of CA45 kinetic analysis and tetracycline labelling. J Bone Joint Surg [Br] 47: 157–180

    Google Scholar 

  45. Leriche R, Policard A (1928) The normal and pathological physiology of bone. Mosby, St Louis, pp 128

    Google Scholar 

  46. McDonald DJ, Fitzgerald RH Jr., Chao EYS (1988) The enhancement of fixation of a porous-coated femoral component by autograft and allograft in the dog. J Bone Joint Surg [Am] 70: 728–737

    Google Scholar 

  47. Melsen F, Mosekilde L (1978) Tetracycline double labeling of iliac trabecular bone in 41 normal adults. Calcif Tissue Res 26: 99–102

    Google Scholar 

  48. Meunier P, Edouard C, Richard D, Laurent J (1977) Histomorphometry of osteoid tissue: the hyperosteoidoses. In: Bone histomorphometry. Société de la Nouvelle Imprimerie Fournie, Toulouse, pp 249–262

    Google Scholar 

  49. Parfitt AM (1988) Bone remodeling: relationship to the amount and structure of bone and the pathogenesis and prevention of fractures. In: Osteoporosis: etiology, diagnosis and management. Raven Press, New York, pp 45–93

    Google Scholar 

  50. Peacock EE Jr, Van Winkle W Jr (1970) Informmation and the cellular response to injury. In: Surgery and biology of wound repair. Saunders, Philadelphia, pp 1–16

    Google Scholar 

  51. Pilliar Rm (1983) Powder metal-made orthopedic implants with porous surface for fixation by tissue ingrowth. Clin Orthop 176: 42–51

    Google Scholar 

  52. Puzas JE (1990) The osteoblast. In: Primer on the metabolic bone diseases and disorders of mineral metabolism. First, American Society for Bone and Mineral Research, Kelseyville, CA, pp 11–15

    Google Scholar 

  53. Recker RR (1983) Bone histomorphometry: techniques and interpretation. CRC Press, Boca Raton, pp 37–133

    Google Scholar 

  54. Sandborn PM, Cook SD, Spires WP, Kester MA (1988) Tissue response to porous-coated implants lacking initial bone apposition. J Arthroplasty 3: 337–346

    Google Scholar 

  55. Sanderson C, McGee M, Bloebaum RD (1990) Polypropylene containers for safe and predictable embedding of specimens in PMMA. J Histotechnol 13(2): 131–133

    Google Scholar 

  56. Sokal RR, Rohlf FJ (1981) Biometry. The principles and practice of statistics in biological research. Freeman, New York, pp 114–125

    Google Scholar 

  57. Spector M (1982) Bone ingrowth into porous polymers. In: Biocompatibility of orthopaedic implants. CRC Press, Boca Raton, pp 55–88

    Google Scholar 

  58. Spector M, DeMane M, Roberson JR, Greenwood KM, Riggins RS (1986) Porous polysulfone-coated titanium femoral stems in dogs. Trans Orthop Res Soc 11: 351

    Google Scholar 

  59. Spector M, Flemming WR, Kreutner A (1976) Bone growth into porous high-density polyethylene. J Biomed Mater Res 7: 595–603

    Google Scholar 

  60. Spector M, Roberson JR, deAndrade JR, DeMane MF, Lunceford EM (1987) Bone growth into porous polysulfone. J Orthop Surg Tech 3: 21–33

    Google Scholar 

  61. Spivak JM, Ricci JL, Blumenthal NC, Alexander H (1990) A new canine model to ecaluate the biological response of intramedullary bone to implant material and surfaces. J Biomed Mater Res 24: 1121–1149

    Google Scholar 

  62. Summer DR, Jacobs JJ, Turner TM, Urban RM, Galante JO (1989) The amount and distribution of bone ingrowth in tibial components retrieved from human patients. Trans Orthop Res Soc 14: 375

    Google Scholar 

  63. Summer DR, Turner TM, Urban RM, Galante JO (1988) Bone ingrowth in porous-coated cementless femoral stems retrieved from human patients. Trans Orthop Res Soc 13: 365

    Google Scholar 

  64. Summer DRJ, Galante JO (1990) Bone ingrowth. In: Surgery of the musculoskeletal system, 2nd edn. Churchill Livingstone, New York, pp 151–176

    Google Scholar 

  65. Treharne RW, Brighton CT (1979) The use and possible misuse of tetracycline as a vital stain. Clin Orthop 140: 240–246

    Google Scholar 

  66. Turner TM, Sumner DR, Urvan RM, Rivero DP, Galante JO (1986) A comparative study of porous coatings in a weight-bearing total hip-arthroplasty model. J Bone Joint Surg [Am] 68: 1396–1409

    Google Scholar 

  67. Turner TM, Urban RM, Sumner DR, Galante JO (1989) Bone ingrowth in cementless revision of an aseptically loosened canine THA model. Trans Orthop Res Soc 14: 551

    Google Scholar 

  68. Urist MR (1953) The physiologic basis of bone graft surgery, with special reference to the theory of induction. Clin Orthop 1: 207

    Google Scholar 

  69. Urist MR (1980) Bone transplants and implants. In: Fundamental and clinical bone physiology. Lippincott, Philadelphia, pp 331–368

    Google Scholar 

  70. Urist MR (1980) Heterotopic bone formation. In: Fundamental and clinical bone physiology. Lippincott, Philadelphia, pp 369–393

    Google Scholar 

  71. Urist MR, Delange RJ, Finerman GA (1983) Bone cell differentiation and growth factors. Science 220: 680

    Google Scholar 

  72. Urist MR, McLean FC (1952) Osteogenic potency and new-bone formation by induction in transplants to the anterior chamber of the eye. J Bone Joint Surg [Am] 34: 443

    Google Scholar 

  73. Villanueva AR, Lundin KD (1989) A versatile new mineralized bone stain for simultaneous assessment of tetracycline and osteoid seams. Stain Technol 64: 129–138

    Google Scholar 

  74. Welsh RP, Pilliar RM, Macnab I (1971) Surgical implants: The role of surface porosity in fixation to bone and acrylic. J Bone Surg [Am] 53: 963–977

    Google Scholar 

  75. Wronski TJ, Smith JM, Jee WSS (1981) Variations in mineral apposition rate of trabecular bone within the Beagle skeleton. Calcif Tissue Int 33: 583–586

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hofmann, A.A., Bloebaum, R.D., Rubman, M.H. et al. Microscopic analysis of autograft bone applied at the interface of porous-coated devices in human cancellous bone. International Orthopaedics 16, 349–358 (1992). https://doi.org/10.1007/BF00189618

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00189618

Keywords

Navigation