Skip to main content
Log in

Functional neuroanatomy and neuropathology of the human hypothalamus

Anatomy and Embryology Aims and scope Submit manuscript

Abstract

The human hypothalamus is involved in a wide range of functions in the developing, adult and aging subject and is responsible for a large number of symptoms of neuroendocrine, neurological and psychiatric diseases. In the present review some prominent hypothalamic nuclei are discussed in relation to normal development, sexual differentiation, aging and a number of neuropathological conditions.

The suprachiasmatic nucleus, the clock of the brain, shows seasonal and circadian variations in its vasopressin neurons. During normal aging, but even more so in Alzheimer's disease, the number of these neurons decreases. In homosexual men this nucleus is larger than in heterosexual men.

The difference between the sexually dimorphic nuclei of men and women arises between the ages of 2–4 to puberty. In adult men this nucleus is twice as large as in adult women. In the process of aging, a sex-dependent decrease in cell number occurs. The vasopressin and oxytocin cells of the supraoptic and paraventricular nucleus are present in adult numbers as early as mid-gestation. Lower oxytocin neuron numbers are found in Prader-Willi syndrome, AIDS and Parkinson's disease. Familial hypothalamic diabetes insipidus is based upon a point mutation in the vasopressin-neurophysin-glycopeptide gene.

Parvicellular corticotropin-releasing hormone-containing neurons in the paraventricular nucleus increase in number and are activated during the course of aging.

In post-menopausal women, the infundibular or arcuate nucleus contains hypertrophie neurons containing oestrogen receptors. These neurons may be involved in the initiation of menopausal flushes.

The nucleus tuberalis lateralis may be involved in feeding behaviour and metabolism. In Huntington's disease the majority of its neurons is lost; in Alzheimer's disease it shows very strong cytoskeletal alterations.

Tuberomammillary nucleus neurons contain, e.g., histamine or galanine, and project to the cortex. Strong cytoskeletal changes, as well as plaques and tangles are found in this nucleus in Alzheimer's disease.

The various hypothalamic nuclei are probably involved in many functions and symptoms of which only a minority has been revealed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Airaksinen MS, Paer A, Paljärvi L, Reinikanen K, Riekkinen P, Panula P (1991) Histamine neurons in human hypothalamus: anatomy in normal and Alzheimer diseased brains. Neuroscience 44:465–481

    Google Scholar 

  • Allen LS, Hines M, Shryne JE, Gorski RA (1989) Sex difference in the bed nucleus of the stria terminalis of the human brain. J Comp Neurol 302:697–706

    Google Scholar 

  • Bahnsen U, Oosting P, Swaab DF, Nahke P, Richter D, Schmale H (1992) A missense mutation in the vasopressin-neurophysin precursor gene cosegregates with human autosomal dominant neurohypophyseal diabetes insipidus. EMBO J 11:19–23

    Google Scholar 

  • Barry J (1977) Immunofluorescence study of LRF neurons in man. Cell Tissue Res 181:1–14

    Google Scholar 

  • Bergeron C, Kovacs K, Ezrin C, Mizzen C (1991) Hereditary diabetes insipidus: an irnmunohistochemical study of the hypothalamus and pítuitary gland. Acta Neuropathol 81:345–348

    Google Scholar 

  • Borson-Chazot F, Jordan D, Févre-Montange M, Kopp N, Tourniaire J, Rouzioux JM, Veisseire M, Mornex R (1986) TRH and LH-RH distribution in discrete nuclei of the human hypothalamus: evidence for a left predominance of TRH. Brain Res 382:433–436

    Google Scholar 

  • Braak H, Braak E (1987) The hypothalamus of the human adult: chiasmatic region. Anat Embryol 176:315–330

    Google Scholar 

  • Braak H, Braak E (1989) Cortical and subcortical argyrophylic grains characterize a disease associated with adult onset dementia. Neuropathol Appl Neurobiol 15:13–26

    Google Scholar 

  • Braak H, Braak E (1992) Anatomy of the human hypothalamus (chiasmatic and tuberal region) In: Swaab DF, Hofman MA, Mirmiran M, Ravid R, Van Leeuwen FW (eds) The human hypothalamus in health and disease. Progress in brain research, vol 93. Elsevier, Amsterdam, pp 3–16

    Google Scholar 

  • Braverman LE, Mancini JP, McGoldrick DM (1965) Hereditary idiopathic diabetes insipidus. A case report with autopsy findings. Ann Intern Med 63:503–508

    Google Scholar 

  • Campbell SS, Kripke DF, Gillin JC, Hrubovcak JC (1988) Exposure to light in healthy elderly subjects and Alzheimer patients. Physiol Behav 42:141–144

    Google Scholar 

  • Carter LS (1992) Oxytocin & Sexual Behavior. Neurosci Biobehav Rev 16:131–144

    Google Scholar 

  • Chan-Palay VL, Jentsch B (1992) Galinin tuberomammillary neurons in the hypothalamus in Alzheimer's and Parkinson's disease. In: Swaab DF, Hofman MA, Mirmiran M, Ravid R, Van Leeuwen FW (eds) The human hypothalamus in health and disease. Progress in brain research, vol 93. Elsevier, Amsterdam, pp 263–270

    Google Scholar 

  • Cohen RA, Albers HE (1991) Disruption of human circadian and cognitive regulation following a discrete hypothalamic lesion: a case study. Neurology 41:726–729

    Google Scholar 

  • De Jonge FH, Louwerse AL, Ooms MP, Evers P, Endert E, Van de Poll NE (1989) Lesions of the SDN-POA inhibit sexual behaviour of male Wistar rats. Brain Res Bull 23:483–492

    Google Scholar 

  • Diepen R (1962) Der Hypothalamus. In: W Bargmann (ed) Handbuch der mikroskopischen Anatomie des Menschen IV/7. Springer, Berlin Heidelberg New York, pp 1–181

    Google Scholar 

  • Dierickx K, Vandesande F (1977) Immunocytochemical localization of the vasopressinergic and the oxytocinergic neurons in the human hypothalamus. Cell Tissue Res 184:15–27

    Google Scholar 

  • Dörner G (1988) Neuroendocrine response to estrogen and brain differentiation in heterosexuals, homosexuals, and transsexuals. Arch Sexual Behav 17:57–75

    Google Scholar 

  • Fekete M, Van Ree JM, Niesink RJM, De Wied D (1985) Disruption of circadian rhythms induces retrograde amnesia. Physiol Behav 34:883–887

    Google Scholar 

  • Fliers E, Swaab DF (1983) Activation of vasopressinergic and oxytocinergic neurons during aging in the Wistar rat. Peptides 4:165–170

    Google Scholar 

  • Fliers E, De Vries GJ, Swaab DF (1985) Changes with aging in the vasopressin and oxytocin innervation of the rat brain. Brain Res 348:1–8

    Google Scholar 

  • Fliers E, Guldenaar SEF, Van de Wal N, Swaab DF (1986) Extrahypothalamic vasopressin and oxytocin in the human brain; presence of vasopressin cells in the bed nucleus of the stria terminalis. Brain Res 375:363–367

    Google Scholar 

  • Frolkis VV, Golovchenko SF, Medved VI, Frolkis RA (1982) Vasopressin and cardiovascular system in aging. Gerontology 28:290–302

    Google Scholar 

  • Gladue BA, Green R, Helleman RE (1984) Neuroendocrine response to estrogen and sexual orientation. Science 225:1496–1499

    Google Scholar 

  • Gorski RA, Gordon JH, Shryne JE, Southam AM (1978) Evidence for a morphological sex difference within the medial preoptic area of the rat brain. Brain Res 148:333–346

    Google Scholar 

  • Goudsmit E, Fliers E, Swaab DF (1988a) Vasopressin and oxytocin excretion in the Brown Norway rat in relation to aging, water metabolism and testosterone. Mech Ageing Dev 44:241–252

    Google Scholar 

  • Goudsmit E, Fliers E, Swaab DF (1988b) Testosterone supplementation restores vasopressin innervation in the senescent rat brain. Brain Res 473:306–313

    Google Scholar 

  • Goudsmit E, Hofman MA, Fliers E, Swaab DF (1990) The supraoptic and paraventricular nuclei of the human hypothalamus in relation to sex, age and Alzheimer's disease. Neurobiol Aging 11:529–536

    Google Scholar 

  • Hinton DR, Sadun AA, Blanks JC, Miller CA (1986) Optic nerve degeneration in Alzheimer's disease. N Engl J Med 315:485–487

    Google Scholar 

  • His W (1893) Vorschläge zur Einteilung des Gehirns. Arch Anat Entwicklungsgesch (Leipzig) 17:172–179

    Google Scholar 

  • Hofman MA, Swaab DF (1989) The sexually dimorphic nucleus of the preoptic area in the human brain: a comparative morphometric study. J Anat 164:55–72

    Google Scholar 

  • Hofman MA, Swaab DF (1992a) The human hypothalamus: comparative morphometry and photoperiodic influences. In: Swaab DF, Hofman MA, Mirmiran M, Ravid R, Van Leeuwen FW (eds) The human hypothalamus in health and disease. Progress in brain research, vol 93. Elsevier, Amsterdam, pp 133–149

    Google Scholar 

  • Hofman MA, Swaab DF (1992b) Seasonal changes in the suprachiasmatic nucleus of man. Neurosci Lett 139:257–260

    Google Scholar 

  • Hofman MA, Goudsmit E, Purba JS, Swaab DS (1990) Morphometric analysis of the supraoptic nucleus in the human brain. J Anat 172:259–270

    Google Scholar 

  • Honnebier MBOM, Swaab DF, Mirmiran M (1989) Diurnal rhythmicity during early human development. In: Reppert SM (ed) Development of circadian rhythmicity and photoperiodism in mammals. Perinatology Press, Ithaca, NY, pp 83–103

    Google Scholar 

  • Hoogendijk JE, Fliers E, Swaab DF, Verwer RWH (1985) Activation of vasopressin neurons in the human supraoptic and paraventricular nucleus in senescence and senile dementia. J Neurol Sci 69:291–299

    Google Scholar 

  • Horn E, Lach B, Lapierre Y, Hrdina P (1988) Hypothalamic pathology in the neuroleptic malignant syndrome. Am J Psychiatry 145:617–620

    Google Scholar 

  • Insel TR (1992) Oxytocin — a neuropeptide for affiliation: evidence from behavioral, receptor autoradiographic, and comparative studies. Psychoneuroendocrinology 17:3–35

    Google Scholar 

  • Ishii T (1966) Distribution of Alzheimer's neurofibrillary changes in the brain stem and hypothalamus of senile dementia. Acta Neuropathol 6:181–187

    Google Scholar 

  • Ito M, Mori Y, Oiso Y, Saito H (1991) A single base substitution in the coding region for neurophysin II associated with familial central diabetes insipidus. J Clin Invest 87:725–728

    Google Scholar 

  • Jacobson CD, Shryne JE, Shapiro F, Gorski RA (1980) Ontogeny of the sexually dimorphic nucleus of the preoptic area. J Comp Neurol 193:541–548

    Google Scholar 

  • Jones E, Burton H, Saper CB, Swanson LW (1976) Midbrain, diencephalic and cortical relationships of the basal nucleus of Meynert and associated structures in primates. J Comp Neurol 167:385–420

    Google Scholar 

  • Katz B, Rimmer S, Iragui V, Katzman R (1989) Abnormal pattern electroretinogram in Alzheimer's disease: evidence for retinal ganglion cell degeneration? Ann Neurol 26:221–225

    Google Scholar 

  • Kopp N, Najimi M, Champier J, Chigr F, Charnay Y, Epelbaum J, Jordan D (1992) Ontogeny of peptides in human hypothalamus in relation to sudden infant death syndrome (SIDS). In: Swaab DF, Hofman MA, Mirmiran M, Ravid R, Van Leeuwen FW (eds) The human hypothalamus in health and disease. Progress in brain research, vol 93. Elsevier, Amsterdam, pp 167–188

    Google Scholar 

  • Kovacs K, Sheehan HL (1982) Pituitary changes in Kallman's syndrome. A histologic, immunocytologic, ultrastructural, and immunoelectron microscopic study. Fert Steril 37:83–89

    Google Scholar 

  • Kremer HPH (1992) The hypothalamic lateral tuberal nucleus: normal anatomy and changes in neurological diseases. In: Swaab DF, Hofman MA, Mirmiran M, Ravid R, Van Leeuwen FW (eds) The human hypothalamus in health and disease. Progress in brain research, vol 93. Elsevier, Amsterdam, pp 249–261

    Google Scholar 

  • Kremer HPH, Roos RAC, Dingjan G, Marani E, Bots GTM (1990) Atrophy of the hypothalamic lateral tuberal nucleus in Huntington's disease. J Neuropathol Exp Neurol 49:371–382

    Google Scholar 

  • Kremer HPH, Swaab DF, Bots GThAM, Fisser B, Ravid R, Roos RAC (1991) The hypothalamic lateral tuberal nucleus in Alzheimer's disease. Ann Neurol 29:279–284

    Google Scholar 

  • Le Gros Clark WE (1938) Morphological aspects of the hypothalamus. In: Le Gros Clark WE, Beattie J, Riddoch G, Dott NM (eds) The hypothalamus. Morphological, functional, clinical and surgical aspects. Oliver & Boyd, Edinburgh, pp 1–68

    Google Scholar 

  • Legros JJ, Gilot P, Schmilz S, Bruwier M, Mantanus H, TimsitBerthier M (1980) Neurohypophyseal peptides and cognitive function: a clinical approach. In: Brambilla F, Racagni G, De Wied D (eds) Progress in psychoneuroendocrinology. Elsevier, Amsterdam, pp 325–337

    Google Scholar 

  • Matsumoto A, Arai Y (1983) Sex difference in volume of the ventromedial nucleus of the hypothalamus in the rat. Endocrinol Jpn 30:277–280

    Google Scholar 

  • Mirmiran M, Kok JH (1991) Circadian rhythms in early human development. Early Hum Dev 26:121–128

    Google Scholar 

  • Mirmiran M, Overdijk J, Witting W, Klop A, Swaab DF (1988) A simple method for recording and analyzing circadian rhythms in man. J Neurosci Methods 25:209–214

    Google Scholar 

  • Mai JK, Kedziora O, Teckhaus L, Sofroniew MV (1991) Evidence for subdivisions in the human suprachiasmatic nucleus. J Comp Neurol 305:508–525

    Google Scholar 

  • Moore RY (1992) The organization of the human circadian timing system. In: Swaab DF, Hofman MA, Mirmiran M, Ravid R, Van Leeuwen FW (eds) The human hypothalamus in health and disease. Progress in brain research, vol 93. Elsevier, Amsterdam, pp 99–117

    Google Scholar 

  • Morrison JH, Benoit R, Magistretti PJ, Bloom FE (1983) Immunohistochemical distribution of pro-somatostatin-related peptides in cerebral cortex. Brain Res 262:344–351

    Google Scholar 

  • Morton A (1961) A quantitative analysis of the normal neuron population of the hypothalamic magnocellular nuclei in man and of their projections to the neurohypophysis. J Comp Neurol 136:143–158

    Google Scholar 

  • Murphy MR, Seckl JR, Burton S, Checkley SA, Lightman SL (1987) Changes in oxytocin and vasopressin secretion during sexual activity in men. J Clin Endocrinol Metab 65:738–741

    Google Scholar 

  • Nagai L, Li CH, Hsieh SM, Kizaki T, Urano Y (1984) Two cases of hereditary diabetes insipidus, with an autopsy finding in one. Acta Endocrinol 105:318–323

    Google Scholar 

  • Nauta WJH, Haymaker W (1969) Hypothalamic nuclei and fiber connections. In: Haymaker W, Anderson E, Nauta WJH (eds) The hypothalamus. Thomas, Springfield, Ill, pp 136–203

    Google Scholar 

  • Okawa M, Hishikawa Y, Hozumi S, Hori H (1991) Sleep-wake rhythm disorder and phototherapy in elderly patients with dementia. Biol Psychiatry 1:837–840

    Google Scholar 

  • Olson BR, Drutarosky MD, Stricker EM, Verbalis JG (1991) Brain oxytocin receptor antagonism blunts the effects of anorexigenic treatments in rats: evidence for central oxytocin inhibition of food intake. Endocrinology 129:785–791

    Google Scholar 

  • Panayotacopoulou MT, Swaab DF (1993) Development of tyrosine hydroxylase-immunoreactive neurons in the human paraventricular and supraoptic nuclei. Dev Brain Res (in press)

  • Panula P, Airaksinen MS, Pirvola U, Kotilainen E (1990) Histamine containing neuronal system in human brain. Neuroscience 34:129–132

    Google Scholar 

  • Prinz PN, Viatliano PP, Vitiello MV, Bokan J, Raskind M, Perskind E, Gerber C (1982) Sleep, EEG and mental function changes in senile dementia of the Alzheimer's type. Neurobiol Aging 3:361–370

    Google Scholar 

  • Raadsheer FC, Sluiter AA, Ravid R, Tilders FJH, Swaab DF (1993) Localization of corticotropin-releasing hormone (CRH) neurons in the paraventricular nucleus of the human hypothalamus; age-dependent colocalization with vasopressin. Brain Res (in press)

  • Ranee NE (1992) Hormonal influences on morphology and neuropeptide gene expression in the infundibular nucleus of post-menopausal women. In: Swaab DF, Hofman MA, Mirmiran M, Ravid R, Van Leeuwen FW (eds) The human hypothalamus in health and disease. Progress in brain research, vol 93. Elsevier, Amsterdam, pp 221–236

    Google Scholar 

  • Ravid R, Fliers E, Swaab DF, Zurcher C (1987) Changes in vasopressin and testosterone in the senescent Brown-Norway (BN/BiRij) rat. Gerontology 33:87–98

    Google Scholar 

  • Reppert SM (1992) Pre-natal development of a hypothalamic biological clock. In: Swaab DF, Hofman MA, Mirmiran M, Ravid R, Van Leeuwen FW (eds) The human hypothalamus in health and disease. Progress in brain research, vol 93. Elsevier, Amsterdam, pp 119–132

    Google Scholar 

  • Rusak B, Zucker I (1979) Neural regulation of circadian rhythms. Physiol Rev 59:449–526

    Google Scholar 

  • Sack RL, Lewy AJ, Blood ML, Keith LD, Nakagawa H (1992) Circadian rhythm abnormalities in totally blind people: incidence and clinical significance. J Clin Endocrinol Metab 75:127–134

    Google Scholar 

  • Sandyk R, Iacono RP, Bamford CR (1987) The hypothalamus in Parkinson's disease. Ital J Neurol Sci 8(3): 227–234

    Google Scholar 

  • Sanford JRA (1975) Tolerance of debility in elderly dependents by supporters at home: its significance for hospital practice. B M J 3:471–473

    Google Scholar 

  • Saper CB (1985) Organization of cerebral cortical afferent systems in the rat. II Hypothalamocortical projections. J Comp Neurol 237:21–46

    Google Scholar 

  • Saper CB (1990) Hypothalamus. In: Paxinos G (ed) The human nervous system. Academic Press, San Diego, pp 389–413

    Google Scholar 

  • Saper CB, German DC (1987) Hypothalamic pathology in Alzheimer's disease. Neurosci Lett 74:364–370

    Google Scholar 

  • Schwanzel-Fukuda M, Bick D, Pfaff D (1989) Luteinizing hormone-releasing hormone (LHRH)-expressing cells do not migrate normally in an inherited hypogonadal (Kallmann) syndrome. Mol Brain Res 6:311–326

    Google Scholar 

  • Schwartz WJ, Bosis NA, Hedley-Whyte ET (1986) A discrete lesion of ventral hypothalamus and optic chiasm that disturbed the daily temperature rhythm. J Neurol 233:1–4

    Google Scholar 

  • Sheehan HL, Kovacs K (1966) The subventricular nucleus of the human hypothalamus. Brain 89:589–614

    Google Scholar 

  • Simpson WA, Yates CM, Watts AG, Fink G (1988) Congo red birefringent structures in the hypothalamus in senile dementia of the Alzheimer type. Neuropathol Appl Neurobiol 14:381–393

    Google Scholar 

  • Spencer S, Saper CB, Joh T, Reis DJ, Goldstein M, Raese JD (1985) Distribution of catecholamine-containing neurons in the normal human hypothalamus. Brain Res 328:73–80

    Google Scholar 

  • Steinbusch HWM, Mulder AH (1984) Localization and projections of histamine immunoreactive neurons in the central nervous system of the rat. In: Björklund A, Hökfelt T, Kuhar MJ (eds) Handbook of chemical neuroanatomy 3. Elsevier, Amsterdam, pp 126–140

    Google Scholar 

  • Swaab DF (1991) Brain aging and Alzheimer's disease: “wear and tear” versus “use it or lose it”. Neurobiol Aging 12:317–324

    Google Scholar 

  • Swaab DF, Fliers E (1985) A sexually dimorphic nucleus in the human brain. Science 228:1112–1115

    Google Scholar 

  • Swaab DF, Hofman MA (1988) Sexual differentiation of the human hypothalamus: ontogeny of the sexually dimorphic nucleus of the preoptic area. Dev Brain Res 44:314–318

    Google Scholar 

  • Swaab DF, Hofman MA (1990) An enlarged suprachiasmatic nucleus in homosexual men. Brain Res 537:141–148

    Google Scholar 

  • Swaab DF, Fliers E, Partiman TS (1985) The suprachiasmatic nucleus of the human brain in relation to sex, age and senile dementia. Brain Res 342:37–44

    Google Scholar 

  • Swaab DF, Roozendaal B, Ravid R, Velis DN, Gooren L, Williams RS (1987) Suprachiasmatic nucleus in aging, Alzheimer's disease, transsexuality and Prader-Willi syndrome. In: De Kloet R et al (eds) Neuropeptides and brain function. Progress in brain research, vol 72. Elsevier, Amsterdam, pp 301–310

    Google Scholar 

  • Swaab DF, Hofman MA, Honnebier MBOM (1990) Development of vasopressin neurons in the human suprachiasmatic nucleus in relation to birth. Dev Brain Res 52:289–293

    Google Scholar 

  • Swaab DF, Gooren LJG, Hofman MA (1992a) The human hypothalamus in relation to gender and sexual orientation. In: Swaab DF, Hofman MA, Mirmiran M, Ravid R, Van Leeuwen FW (eds) The human hypothalamus in health and disease. Progress in brain research, vol 93. Elsevier, Amsterdam, pp 205–215

    Google Scholar 

  • Swaab DF, Grundke-Iqbal I, Iqbal K, Kremer HPH, Ravid R, Van de Nes JAP (1992b) Tau and ubiquitin in the human hypothalamus in aging and Alzheimer's disease. Brain Res 590:239–249

    Google Scholar 

  • Treip CS (1992) The hypothalamus and pituitary gland. In: Hume Adams J, Duchen LW (eds) Greenfield's neuropathology. Arnold, London, pp 1046–1062

    Google Scholar 

  • Trick GL, Barris MC, Bickler-Bluth M (1989) Abnormal pattern electroretinograms in patients with senile dementia of the Alzheimer type. Ann Neurol 26:226–231

    Google Scholar 

  • Turkenburg JL, Swaab DF, Endert E, Louwerse AL, Van de Poll NE (1988) Effects of lesions of the sexually dimorphic nucleus on sexual behaviour of testosterone-treated female Wistar rats. Brain Res Bull 21:215–224

    Google Scholar 

  • Ule G, Walter C (1983) Morphological feedback effect on the nucleoli of the neurons in the nucleus arcuatus (infundibularis) to hypophyseal hypogonadism in juvenile haemochromatosis. Acta Neuropathol 61:81–84

    Google Scholar 

  • Ule G, Schwechheimer K, Tschahargane C (1983) Morphological feedback effect on neurons of the nucl. arcuatus (sive infundibularis) and nucl. subventricularis hypothalami due to gonadal atrophy. Virchows Arch [Pathol Anst] 400:297–308

    Google Scholar 

  • Ulfig N, Braak H (1984) Amyloid deposits and neurofibrillary changes in the hypothalamic tuberomammillary nucleus. J Neural Transm (P.D. Sect) 1:143

    Google Scholar 

  • Van Gool WA, Mirmiran M (1986) Aging and circadian rhythms. In: Swaab DF, Fliers E, Mirmiran M, Van Gool WA, Van Haaren F (eds) Aging of the brain and Alzheimer's disease. Progress in brain research, vol 70. Elsevier, Amsterdam, pp 255–279

    Google Scholar 

  • Vermeulen A (1990) Androgens and male senescence. In: Nieschlag E, Behre HM (eds) Testosterone. Action, deficiency, substitution. Springer, Berlin Heidelberg New York, pp 629–645

    Google Scholar 

  • Watanabe T, Taguchi Y, Shiosaka S, Tanaka J, Kubota H, Terano Y, Tohyama M, Wada H (1984) Distribution of the histaminergic neuron system in the central nervous system of rats: a fluorescent immunohistochemical analysis with histidine decarboxylase as a marker. Brain Res 295:13–25

    Google Scholar 

  • Wierda M, Goudsmit E, Van der Woude PF, Purba JS, Hofman MA, Bogte H, Swaab DF (1991) Oxytocin cell number in the human paraventricular nucleus remains constant with aging and in Alzheimer's disease. Neurobiol Aging 12:511–516

    Google Scholar 

  • Wisniewski KE, Bobinski M (1991) Hypothalamic abnormalities in Down syndrome. The morphogenesis of Down Syndrome. Wiley-Liss, New York, pp 153–167

    Google Scholar 

  • Witting W, Kwa IH, Eikelenboom P, Mirmiran M, Swaab DF (1990) Alterations in the circadian rest-activity rhythm in aging and Alzheimer's disease. Biol Psychiatry 27:563–572

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Swaab, D.F., Hofman, M.A., Lucassen, P.J. et al. Functional neuroanatomy and neuropathology of the human hypothalamus. Anat Embryol 187, 317–330 (1993). https://doi.org/10.1007/BF00185889

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00185889

Key words

Navigation