Skip to main content
Log in

cDNA sequence and chromosome localization of pig α1,3 galactosyltransferase

  • Original Paper
  • Published:
Immunogenetics Aims and scope Submit manuscript

Abstract

Human serum contains natural antibodies (NAb), which can bind to endothelial cell surface antigens of other mammals. This is believed to be the major initiating event in the process of hyperacute rejection of pig to primate xenografts. Recent work has implicated galoctosyl α1,3 galactosyl β1,4 N-acetyl-glucosaminyl carbohydrate epitopes, on the surface of pig endothelial cells as a major target of human natural antibodies. This epitope is made by a specific galactosyltransferase (α1,3 GT) present in pigs but not in higher primates. We have now cloned and sequenced a full-length pig α1,3 GT cDNA. The predicted 371 amino acid protein sequence shares 85% and 76% identity with previously characterized cattle and mouse α1,3 GT protein sequences, respectively. By using fluorescence and isotopic in situ hybridization, the GGTA1 gene was mapped to the region q2.10–q2.11 of pig chromosome 1, providing further evidence of homology between the subterminal region of pig chromosome 1q and human chromosome 9q, which harbors the locus encoding the AB0 blood group system, as well as a human pseudogene homologous to the pig GGTA1 gene.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Auchincloss, H. J. Xenogeneic transplantation: a review. Transplantation 46: 1–20, 1988

    Google Scholar 

  • Calne, R. Y. Organ transplantation between widely disparate species. Transplant Proc 2: 550–556, 1970

    Google Scholar 

  • Chowdhary, B. P., Harbitz, I., Mäkinen, A., Davis, W., and Gustavsson, I. Localisation of the glucose phosphate isomerase gene to the p12–q21 segment of chromosome 6 in pig by in situ hybridization. Hereditas 111: 73–78, 1989

    Google Scholar 

  • Committee for the Standardized Karyotype of the Domestic Pig: Standard karyotype of the domestic pig. Hereditas 109: 151–157, 1988

    Google Scholar 

  • Cooper, D. K. C. and Ye, Y. Experience with clinical heart xenotransplantation. In Cooper, D. K. C., Kemp, E., Reemtsma, K., and White, D. J. G., (eds.): Xenotransplantation, pp. 541–557, Springer Heidelberg, 1991

    Google Scholar 

  • Cooper, D. K. C., Good, A. H., Koren, E., Oriol, R., Malcolm, A. J., Ippolito, R. M., Neethling, F. A., Ye, Y., Romano, E. and Zuhdi, N. Identification of α-galoctosyl and other carbohydrate epitopes that are bound by human anti-pig antibodies: relevance to discordant xenografting in man. Transplant Immunol 1: 198–205, 1993

    Google Scholar 

  • Ellegren, H., Chowdhary, B. P., Fredholm, M., Høyheim, B., Johansson, M., Bräumer Nielsen, P., Thomsen, P. D., and Andersson, L. A physically anchored linkage map of pig chromosome 1 uncovers sex- and position-specific recombination rates. Genomics, in press

  • Galili, U. Interaction of the natural anti-Gal antibody with α-galactosyl epitopes: a major obstacle for xenotransplantation in humans. Immunol Today 14: 480–482, 1993

    Google Scholar 

  • Galili, U., Clark, M. R., Shohet, S. B., Buehler, J., and Macher, B. A. Evolutionary relationship between the natural anti-Gal antibody and the Galα1,3Gal epitope in primates. Proc Natl Acad Sci USA 84: 1369–1373, 1987

    Google Scholar 

  • Galili, U., Shohet, S. B., Kobrin, E., Stults, C. L., and Macher, B. A. Man, apes and old world monkeys differ from other mammals in the expression of α-galactosyl epitopes on nucleated cells. J Biol Chem 263: 17755–17762, 1988

    Google Scholar 

  • Good, A. H., Cooper, D. K. C., Malcolm, A. J., Ippolito, R. M., Koren, E., Neethling, F. A., Ye, Y., Zuhdi, N., and Lamontagne, L. R. Identification of carbohydrate structures that bind human anti-porcine antibodies: implications for discordant xenografting in humans. Transplant Proc 24: 559–562, 1992

    Google Scholar 

  • Gustafsson, K., Germana, S., Hirsch, F., Pratt, K., Leguern, C., and Sachs, D. H. Structure of miniature swine class II DRBgenes: conservation of hypervariable amino acid residues between distantly related mammalian species. Proc Natl Acad Sci USA 87: 9798–9802, 1990

    Google Scholar 

  • Gustafsson, K., Strahan, K., and Preece, A. α1,3-Galactosyltransferase: a target for in vivo genetic manipulation in xenotransplantation. Immunol Rev 141: 55–66, 1994

    Google Scholar 

  • Joziasse, D. H., Shaper, J. H., Van den Eijnden, D. H., Van Tunen, A. J., and Shaper, N. L. Bovine α1,3-Galactosyltransferase: isolation and characterisation of a cDNA clone. J Biol Chem 264: 14290–14297, 1989

    Google Scholar 

  • Joziasse, D. H., Shaper, J. H., Jabs, E. W., and Shaper, N. L. Characterisation of an α1,3-Galactosyltransferase homologue on human chromosome 12 that is organised as a processed pseudeogene. J Biol Chem 266: 6991–6998, 1991

    Google Scholar 

  • Joziasse, D. H., Shaper, N. L., Kim, D., Van den Eijnden, D. H., and Shaper, J. H. Murine α1,3-galactosyltransferase: a single gene locus specifies four isoforms of the enzyme by alternative splic- J Biol Chem 267: 5534–5541, 1992

    Google Scholar 

  • Larsen, R. D., Rajan, V. P., and Kukowska-Latallo, J. F. Isolation of a cDNA encoding a murine UDPgalactose: β-D-galactosyl-1,4-N-acetyl-D-glucosaminide α1,3-galactosyltransferase: expression cloning by gene transfer. Proc Natl Acad Sci USA 86: 8227–8231, 1989

    Google Scholar 

  • Mäkinen, A., Chowdhary, B. P., Mahdy, E., Andersson, L., and Gustavsson, I. Localisation of the equine major histocompatibility complex (ELA) to chromosome 20 by in situ hybridization. Hereditas 110: 93–96, 1989

    Google Scholar 

  • Paul, L. C. Mechanism of humoral xenograft rejection. In Cooper, D. K. C., Kemp, E., Reemtsma, K., and White D. J. G., (eds.): Xenotransplantation, pp. 47–67, Springer Heidelberg, 1991

  • Pinkel, D., Landegent, J., Collins, C., Fuscoe, J., Segraves, R., Lucas, J., and Gray, J. Fluorescence in situ hybridization with human chromosome specific libraries: detection of trisomy 21 and translocation of chromosome 4. Proc Natl Acad Sci USA 85: 9138–9142, 1988

    CAS  PubMed  Google Scholar 

  • Platt, J. L. and Bach, F. H. Mechanism of tissue injury in hyperacute xenograft rejection. In Cooper, D. K. C., Kemp, E., Reemtsma, K., and White, D. J. G., (eds.): Xenotransplantation, pp. 69–79, Springer Heidelberg, 1991

  • Popescu, N. C., Amsbaugh, S. C., Swan, D. C., and Di Paolo, J. A. Induction of chromosome banding by trypsin/EDTA for gene mapping by in situ hybridization. Cytogenet Cell Genet 39: 73–74, 1985

    Google Scholar 

  • Saiki, R., Scharf, S., Faloona, F., Mullis, K., Horn, G., Erlich, H. A., and Arnheim, N. Enzymatic amplification of β-Globin genomic sequences and restriction site analysis for diagnosis of sickle cell anemia. Science 230: 1350–1354, 1985

    Google Scholar 

  • Sandrin, M. S., Vaughan, H. A., Dabkowski, P. L., and McKenzie, I. F. C. Studies on human naturally occurring antibodies to pig xenografts. Transplant Proc 25: 2917–2918, 1993a

    Google Scholar 

  • Sandrin, M. S., Vaughan, H. A., Dabkowski, P. L., and McKenzie, I. F. C. Anti-pig IgM antibodies in human serum react predominately with Gal(α1–3)Gal epitopes. Proc Natl Acad Sci USA 90: 11391–11395, 1993b

    Google Scholar 

  • Sandrin, M. S., Dabkowski, P. L., Henning, M. M., Mouhtouris, E., and McKenzie, I. F. C. Characterization of cDNA clones for porcine α(1,3)galactosyltransferase: the enzyme generating the Galα(1,3)Gal epitope. Xenotransplantation, in press

  • Sanger, F., Nicklen, S., and Coulson, A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci USA 74: 5463–5467, 1977

    CAS  PubMed  Google Scholar 

  • Shaper, N. L., Lin, S.-P., Joziasse, D. H., Kim, D. Y., and Yang-Feng, T. L. Assignment of two human α-1,3-galactosyltransferase gene sequences (GGTA1 and GGTA1P) to chromosomes 9q33-q34 and 12q14-q15. Genomics 12: 613–615, 1992

    Google Scholar 

  • Short, M., Fernandez, J. M., Sorge, J. A., and Huse, W. D. Lambda ZAP: a bacteriophage lambda expression vector with in vivo excision properties. Nucleic Acids Res 16: 7583–7600, 1988

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

The nucleotide sequence data reported in this paper have been submitted to the GenBank nucleotide sequence database and have been assigned the accession number L36152

Rights and permissions

Reprints and permissions

About this article

Cite this article

Strahan, K.M., Gu, F., Preece, A.F. et al. cDNA sequence and chromosome localization of pig α1,3 galactosyltransferase. Immunogenetics 41, 101–105 (1995). https://doi.org/10.1007/BF00182319

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00182319

Keywords

Navigation