Skip to main content
Log in

Implicit-explicit methods for reaction-diffusion problems in pattern formation

  • Published:
Journal of Mathematical Biology Aims and scope Submit manuscript

Abstract

Reaction-diffusion mechanisms have been used to explain pattern formation in developmental biology and in experimental chemical systems. To approximate the corresponding spatially discretized models, an explicit scheme can be used for the reaction term and an implicit scheme for the diffusion term. Such implicit-explicit (IMEX) schemes have been widely used, especially in conjunction with spectral methods in fluid flow problems.

In this work, we analyze the performance of several of the best known linear multistep IMEX schemes for reaction-diffusion problems in pattern formation. For the linearized two chemical system, the growth properties exhibited by IMEX schemes are examined. Schemes which accurately represent the growth of the linearized problem for large time steps are identified. Numerical experiments show that first order accurate schemes, as well as schemes which produce only a weak decay of high frequency spatial error may yield plausible results which are nonetheless qualitatively incorrect. For such schemes, computations using refinements in the time step are likely to produce essentially the same (erroneous) results. Higher order schemes which produce a strong decay of high frequency errors are proposed instead.

Our findings are demonstrated on several examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Abia and J. M. Sanz-Serna.: The spectral accuracy of a fully-discrete scheme for a nonlinear third order equation. Computing 44, 187–196, 1990

    Google Scholar 

  2. P. Arcuri and J. D. Murray.: Pattern sensitivity to boundary and initial conditions in reaction-diffusion models. J. Mathematical Biology 24, 141–165, 1986

    Google Scholar 

  3. U. M. Ascher, S. J. Ruuth and B. T. R. Wetton.: Implicit-explicit methods for time-dependent PDE's. Siam J. Numerical Analysis, 32(3), 797–823, 1995

    Google Scholar 

  4. Y. Y. Azmy and V. Protopopescu.: On the dynamics of a discrete reaction-diffusion system. Numerical Methods for Partial Differential Equations 7(4), 385–405, 1991

    Google Scholar 

  5. P. Borkmans, A. DeWit and G. Dewel.: Competition in ramped Turing structures. Physica A 188, 137–157, 1992

    Google Scholar 

  6. J. P. Boyd.: Chebyshev & Fourier Spectral Methods. Springer-Verlag, 1989

  7. M. E. Brachet, D. I. Meiron, S. A. Orszag, B. G. Nickel, R. H. Morf and U. Frisch.: Small-scale structure of the Taylor-Green vortex. J. Fluid Mechanics 130, 411–452, 1983

    Google Scholar 

  8. C. Canuto, M. Y. Hussaini, A. Quarteroni and T. A. Zang.: Spectral Methods in Fluid Dynamics. Springer-Verlag, 1987

  9. V. Dufiet and J. Boissonade.: Conventional and unconventional turing patterns. J. Chem. Phys. 96(1), 664–673, 1992

    Google Scholar 

  10. J. C. Eilbeck.: A collocation approach to the numerical collocation of simple gradients in reaction-diffusion systems. J. Mathematical Biology 16, 233–249, 1983

    Google Scholar 

  11. R. F. Fox, I. R. Gatland, R. Roy and G. Vemuri.: Fast, accurate algorithm for numerical simulation of exponentially correlated colored noise. Phys. Rev. 38A, 5938–5940, 1988

    Google Scholar 

  12. C. W. Gear.: Numerical initial value problems in ordinary differential equations. Prentice-Hall, 1971

  13. A. Gierer and H. Meinhardt.: A theory of biological pattern formation. Kybernetik 12, 30–39, 1972

    Google Scholar 

  14. W. Hackbusch. Multi-Grid methods and Applications. Springer-Verlag, 1985

  15. E. Hairer, S. P. Norsett and G. Wanner.: Solving Ordinary Differential Equations I. Springer-Verlag, 1987

  16. L. G. Harrison.: Kinetic Theory of Living Pattern. Cambridge University Press, 1993

  17. L. G. Harrison and T. C. Lacalli.: Hyperchirality: a mathematically convenient model and biochemically possible model for the kinetics of morphogenesis. Proc. R. Soc. London B202, 361–397, 1978

    Google Scholar 

  18. D. Hoff.: Stability and convergence of finite difference methods for systems of nonlinear reaction-diffusion equations. SIAM J. Numerical Analysis 15, 1161–1177, 1978

    Google Scholar 

  19. A. Hunding.: Bifurcations in Turing systems of the second kind may explain blastula cleavage plane orientation. J. Mathematical Biology 25 (2), 109–122, 1987

    Google Scholar 

  20. M. L. Kagan, R. Kosloff, O. Citri and D. Avnir.: Chemical formation of spatial patterns induced by nonlinearity in a concentration-dependent diffusion coefficient. J. Phys. Chem. 93 (7), 2728–2731, 1989

    Google Scholar 

  21. P. De Kepper, V. Castets, E. Dulos and J. Boissonade.: Turing-type chemical patterns in the chlorite-iodide-malonic acid reaction. Physica D 49, 161–169, 1991

    Google Scholar 

  22. J. Kim and P. Moin.: Application of a fractional-step method to incompressible Navier-Stokes equations. J. Computational Phys. 59, 308–323, 1985

    Google Scholar 

  23. P. E. Kloeden and E. Platen.: Numerical solution of stochastic differential equations. Springer-Verlag, 1992

  24. T. C. Lacalli and L. G. Harrison.: Turing's conditions and the analysis of morphogenic models. J. Theoretical Biology 76, 419–436, 1979

    Google Scholar 

  25. M. J. Lyons and L. G. Harrison.: Stripe selection: An intrinsic property of some pattern-forming models with nonlinear dynamics. Developmental Dynamics 195, 201–215, 1992

    Google Scholar 

  26. The MathWorks.: Matlab User's Guide. The MathWorks, Inc., 1992

  27. H. Meinhardt.: Models of Biological Pattern Formation. Academic Press, 1982

  28. R. M. Miura.: Accurate computation of the stable solitary wave for the FitzHugh-Nagumo equations. J. Mathematical Biology 13, 247–269, 1982

    Google Scholar 

  29. J. D. Murray,: A pre-pattern formation mechanism for animal coat markings. J. Theoretical Biology 88, 161–199, 1981

    Google Scholar 

  30. J. D. Murray.: Parameter space for Turing instability in reaction diffusion mechanisms: a comparison of models. J. Theoretical Biology 98, 143–162, 1982

    Google Scholar 

  31. J. D. Murray.: Mathematical Biology. Springer-Verlag, 1989

  32. D. W. Peaceman and H. H. Rachford.: The numerical solution of parabolic and elliptic differential equations. SIAM J. on Applied Mathematics 3(1), 28–41, 1955

    Google Scholar 

  33. I. Prigogine and R. Lefever.: Symmetry breaking instabilities in dissipative systems. II. J. Chem. Phys. 48, 1695–1700, 1968

    Google Scholar 

  34. S. J. Ruuth.: Implicit-explicit methods for time-dependent PDE's. Master's thesis, Ins. Appl. Math., Univ. of British Columbia, Vancouver, 1993

    Google Scholar 

  35. J. Schnakenberg.: Simple chemical reaction systems with limit cycle behaviour. J. Theoretical Biology 81, 389–400, 1979

    Google Scholar 

  36. J. C. Strikwerda.: Finite Difference Schemes and Partial Differential Equations. Wadsworth & Brooks/Cole, 1989

  37. D. Thomas.: Artificial enzyme membranes, transport, memory, and oscillatory phenomena. In D. Thomas and J. P. Kernevez, editors, Analysis and Control of Immobilized Enzyme Systems, pages 115–150. Springer, 1975

  38. A. M. Turing.: The chemical basis of morphogenesis. Phil. Trans. Roy. Soc. Lond. B237, 37–72, 1952

    Google Scholar 

  39. R. Varga.: Matrix Iterative Analysis. Prentice-Hall, Englewood Cliffs, NJ, 1962

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

The work of the author was partially supported by an NSERC Postgraduate Scholarship

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ruuth, S.J. Implicit-explicit methods for reaction-diffusion problems in pattern formation. J. Math. Biol. 34, 148–176 (1995). https://doi.org/10.1007/BF00178771

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00178771

Key words

Navigation