Skip to main content
Log in

Steps to optimize transscleral photocoagulation

  • Laboratory Investigation
  • Published:
Graefe's Archive for Clinical and Experimental Ophthalmology Aims and scope Submit manuscript

Abstract

•Background: In transscleral photocoagulation, the desired effect is coagulation of parts of the ciliary body or of the peripheral retina. However, the application is often limited by the unwanted effect of coagulation of the sclera. to reduce this effect, the ratio of incident radiation flux to radiation flux transported through the sclera (and able to coagulate the target tissue) should be minimized by the incident beam characteristics.

•Methods: Monte Carlo simulations for the radiation transport problem of multiple scattering in the sclera were used to calculate the ratio of transported to incident radiation for different parameter settings of beam diameters, optical thicknesses of the sclera and beam angles. To verify the theoretical calculations, an simple optical device utilizing a bulb instead of a laser source was constructed and applied to enucleated porcine eyes.

•Results: The theoretical calculations showed that the ratio of incident to transported radiation flux can typically be decreased by a factor of three by increasing the beam radius from 0.35 mm (as used in state-of-the-art laser devices) to 2 mm. This was confirmed by the experiments. Coagulations of the ciliary body or of the peripheral retina were possible with power densities an order of magnitude below the values normally applied with laser sources.

•Conclusion: To improve transscleral photocoagulation, beam diameters should be increased.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Blasini M, Simmons R, Shields MB (990) Early tissue response to transscleral neodymium:YAG cyclophotocoagulation. Invest Ophthalmol Vis Sci 31:1114–1118

    Google Scholar 

  2. Kawahara J, Nakamura R, Wakabayashi Y, Nakano E, Agawa T, Usui M (1990) Effect of transpupillary argon laser cyclophotocoagulation on anterior chamber oxygen tension in rabbit eyes. Jpn J Ophthalmol 34:450–462

    Google Scholar 

  3. Maus M, Katz LJ (1990) Choroidal detachment, flat anterior chamber, and hypotony as complications of neodymium:YAG laser cyclophotocoagulation. Ophthalmology 97:69–72

    Google Scholar 

  4. Hamada M, Suzuki R, Kurimoto S (1991) Transient complete visual loss during transscleral cyclophotocoagulation. Jpn J Clin Ophthalmol 45:949–951

    Google Scholar 

  5. Brooks AMV, Gillies WE (1991) The use of YAG cyclophotocoagulation to lower pressure in advanced glaucoma. Aust NZ J Ophthalmol 19:207–210

    Google Scholar 

  6. Heidenkummer HP, Mangouritsas G, Kampik A (1991) Klinische Anwendungen und Ergebnisse der transskleralen Nd:YAG-Zyklophotokoagulation bei therapierefraktärem Glaucom. Klin Monatsbl Augenheilkd 198:174–180

    Google Scholar 

  7. Wright MM, Grajewski AL, Feuer WJ (1991) Nd:YAG cyclophotocoagulation: outcome of treatment for uncontrolled glaucoma. Ophthalmic Surg 22:279–283

    Google Scholar 

  8. Vogt A (1936) Versuche zur intraokularen Druckherabsetzung mittels Diathermieschädigung des Corpus ciliare (Zyklodiathermiestichelung). Klin Monatsbl Augenheilkd 97:672–673

    Google Scholar 

  9. Weekers R, Lavergne G, Watillon M, Gilson M, Legros AM (1961) Effects of photocoagulation of the ciliary body upon ocular tension. Am J Ophthalmol 52:156–163

    Google Scholar 

  10. Mc Lean JM, Lincoff HA (1964) Cryosurgery of the ciliary body. Trans Am Ophthalmol Soc 62:385–407

    Google Scholar 

  11. de Roetth A Jr (1068) Cryosurgery for the treatment of advanced chronic simple glaucoma. Am J Ophthalmol 66:1034–1041

    Google Scholar 

  12. Smith RS, Stein MN (1969) Ocular hazards of transsscleral laser radiation. II. Intraocular injury produced by ruby and neodymium lasers. Am J Ophthalmol 67:100–110

    Google Scholar 

  13. Beckman H, Kinoshita A, Rota AN, Sugar HS (1972) Transscleral ruby laser irradiation of the ciliary body in the treatment of intractable glaucoma. Trans Am Acad Ophthalmol Otol 76:423–436

    Google Scholar 

  14. Beckman H, Sugar HS (1973) Neodymium laser cyclophotocoagulation. Arch Ophthalmol 90:27–28

    Google Scholar 

  15. Donn A (1955) Ultrasonic wave liquifaction of vitreous humor in living rabbits. Arch Ophthalmol 53:215–223

    Google Scholar 

  16. Purnell EW, Sokollu A, Torchia R, Taner N (1964) Focal chorioretinitis produced by ultrasound. Invest Ophthalmol 3:657–664

    Google Scholar 

  17. Coleman DJ, Lizzi FL, Chang S, Driller J (1981) Applications of therapeutic ultrasound in ophthalmology. In: Kurjak A (ed) Progress in medical ultrasound. Excerpta Medica, Amsterdam, pp 263–270

    Google Scholar 

  18. Coleman DJ, Lizzi FL, Driller J, Rosado A, Chang S, Iwamoto T, Rosenthal D (1985) Therapeutic ultrasound in the treatment of glaucoma. I. Experimental model. Ophthalmology 92:339–346

    Google Scholar 

  19. Coleman DJ, Lizzi FL, Driller J, Rosado A, Burgess SEP, Torpey JH, Smith ME, Silverman RH, Yablonski ME, Chang S, Rondeau ME (1985) Therapeutic ultrasound in the treatment of glaucoma. II. Clinical applications. Ophthalmology 92:347–353

    Google Scholar 

  20. Silverman RH, Vogelsang B, Rondeau MJ, Coleman DJ (1991) Therapeutic ultrasound for the treatment of glaucoma. Am J Ophthalmol 111:327–337

    Google Scholar 

  21. Federman JL, Ando F, Schubert HD, Eagle RC (1987) Contact laser for transscleral photocoagulation. Ophthalmic Surg 18:183–184

    Google Scholar 

  22. Kwasniewska S, Fankhauser F, Van der Zypen E, Rol P, Henchoz PD, England C (1988) Acute effects following transscleral contact irradiation of the ciliary body and the retina/choroid with the cw Nd:YAG laser. Lasers Light Ophthalmol 2:25–34

    Google Scholar 

  23. Rol P, Niederer P, Dürr U, Henchoz PD, Fankhauser F (1990) Experimental investigations on the light scattering properties of the human sclera. Laser Light Ophthalmol 3:201–212

    Google Scholar 

  24. Suzuki Y, Araie M, Yumita A, Yamamoto T (1991) Transscleral Nd:YAG laser cyclophotocoagulation versus cyclocryotherapy. Graefe's Arch Clin Exp Ophthalmol 229:33–36

    Google Scholar 

  25. Bronstein IN, Semendjajew KA (1986) In: Grosche G, Ziegler V, Ziegler D (eds) Taschenbuch der Mathematik. Harri Deutsch, Thun

    Google Scholar 

  26. Schröder G (1990) Technische Optik. Vogel, Würzburg

  27. Krystek M (1993) Optische Strahlung und ihre Messung. In: Niedrig H (ed) Bergmann-Schäfers's Lehrbuch der Experimentalphysik, vol 3, Optik. de Gruyter, Berlin

    Google Scholar 

  28. Geeraets WJ, Williams RC, Chan G, Ham WT Jr, Guerry D, Schmidt FH (1960) The loss of light energy in retina and choroid. Arch Ophthalmol 64:158–167

    Google Scholar 

  29. Allingham RR, Kater AW de, Bellows AR, Hsu J (1990) Probe placement and power levels in contact transscleral neodymium:YAG cyclophotocoagulation. Arch Ophthalmol 108:738–742

    Google Scholar 

  30. Schuman JS, Noecker RJ, Puliafito CA, Jacobsson JJ, Shepps GJ, Wang N (1991) Energy levels and probe placement in contact transscleral semiconductor diode laser cyclophotocoagulation in human cadaver eyes. Arch Opthalmol 109:1534–1538

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Preuβner, PR., Schwenn, O. Steps to optimize transscleral photocoagulation. Graefe's Arch Clin Exp Ophthalmol 233, 302–306 (1995). https://doi.org/10.1007/BF00177653

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00177653

Key words

Navigation