Skip to main content
Log in

Application of enzymatically synthesized short-chain-length hydroxy fatty acid coenzyme A thioesters for assay of polyhydroxyalkanoic acid synthases

  • Applied Microbial and Cell Physiology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Various hydroxyacyl coenzyme A (CoA) thioesters were synthesized from the corresponding hydroxyalkanoic acid (such as e.g. [3-14C]d-(−)-hydroxybutyric acid, [1-14C]d-lactic acid, [1-14C]l-lactic acid, etc.) and from acetyl-CoA employing the propionate CoA transferase of Clostridium propionicum. Preparative isolation of the thioesters on hydrophobic matrices and analysis by HPLC are reported. These thioesters were subjected to a radiometric or a spectrometric assay of polyhydroxyalkanoic acid (PHA) synthase activity. The latter was based on the release of CoA from, for example, d-(−)-3-hydroxybutyryl-CoA, which was detected spectroscopically at 412 nm by reduction of 5,5′-dithiobis(2-nitrobenzoic acid) and provided a convenient assay of poly(3-hydroxybutyrate) synthase. When [1-14C]lactyl-CoA was used as substrate in a PHA synthase assay employing crude extracts obtained from various wild-type strains, [1-14C]lactyl-CoA was used as a substrate at a rate that was only less than 10−4 of the rate than with [3-14C]d-(−)-3-hydroxybutyryl-CoA or was negligible. One exception was a recombinant strain of Escherichia coli, which overexpressed the PHA synthase complex of Chromatium vinosum and which used [1-14C]d-lactyl-CoA as substrate at a relatively high rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Institutional subscriptions

Similar content being viewed by others

References

  • Anderson AJ, Dawes EA (1990) Occurrence, metabolism, metabolic role, and industrial uses of bacterial polyhydroxyalkanoates. Microbiol Rev 54:450–472

    CAS  PubMed  Google Scholar 

  • Anderson AJ, Haywood GW, Williams DR, Dawes EA (1990) The production of polyhydroxyalkanoates from unrelated carbon sources. In: Dawes EA (ed) Novel biodegradable microbial polymers. Kluwer, Dordrecht, pp 119–129

    Google Scholar 

  • Bullock WO, Fernandez JM, Stuart JM (1987) XL1-Blue: a high efficiency plasmid transforming recA Escherichia coli strain with β-galactosidase selection. BioTechniques 5:376–379

    Google Scholar 

  • Bousfield IJ, Green PN (1985) Reclassification of bacteria of the genus Protomonas Urakami and Komagata 1984 in the genus Methylobacterium (Patt, Cole and Hanson) emend. Green and Bousfield 1983. Int J Syst Bacteriol 32:209

    Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Davis DH, Doudoroff M, Stanier RY, Mandel M (1969) Proposal to reject the genus Hydrogenomonas: taxomomic implications. Int J Syst Bacteriol 19:375–390

    Google Scholar 

  • Decker K (1959) Die aktivierte Essigsäure. Ferdinand Enke, Stuttgart

    Google Scholar 

  • Decker K (1962) l-(+)-β-Hydroxybutyryl-Coenzym A. In: Bergmeyer HU (ed) Methoden der enzymatischen Analyse, 1st edn. Verlag Chemie GmbH, Weinheim, pp 441–444

    Google Scholar 

  • Decker K (1985a) Acetyl coenyzme A. In: Bergmeyer HU, Bergmeyer J, Grassl M (eds) Methods of enzymatic analysis, vol 7, 3rd edn. VCH, Weinheim, pp 186–193

    Google Scholar 

  • Decker K (1985b) Acetyl coenzyme A. In: Bergmeyer HU, Bergmeyer J, Grassl M (eds) Methods of enzymatic analysis, vol 7, 3rd edn. VCH, Weinheim, pp 201–206

    Google Scholar 

  • De Buysere MS, Olson MS (1983) The analysis of acyl-coenzyme A derivatives by reverse-phase high performance liquid chromatography. Anal Biochem 133:373–379

    Google Scholar 

  • De Smet MJ, Eggink G, Witholt B, Kingma J, Wynberg H (1983) Characterization of intracellular inclusions formed by Pseudomonas oleovorans during growth on octane. J Bacteriol 154:870–878

    Google Scholar 

  • Doi Y, Tamaki A, Kunioka M, Soga K (1987) Biosynthesis of terpolyesters of 3-hydroxybutyrate, 3-hydroxyvalerate, and 5-hydroxyvalerate in Alcaligenes eutrophus from 5-chloropentanoic and pentanoic acids. Makromol Chem Rapid Commun 8:631–635

    Google Scholar 

  • Ellmann GL (1959) Tissue sulfhydryl groups. Arch Biochem Biophys 82:70–77

    Google Scholar 

  • Fründ C, Priefert H, Steinbüchel A, Schlegel HG (1989) Biochemical and genetic analysis of acetoin catabolism in Alcaligenes eutrophus. J Bacteriol 171:6539–6548

    Google Scholar 

  • Fukui T, Yoshimoto A, Matsumoto M, Hosokawa S, Saito T, Nishikawa H, Tomita K (1976) Enzymatic synthesis of poly-β-hydroxybutyrate in Zoogloea ramigera. Arch Microbiol 110:149–156

    Google Scholar 

  • Haywood GW, Anderson AJ, Dawes EA (1989a) The importance of PHB-synthase substrate speficity in polyhydroxyalkanoate synthesis by Alcaligenes eutrophus. FEMS Microbiol Lett 57:1–6

    Google Scholar 

  • Haywood GW, Anderson AJ, Dawes EA (1989b) A survey of the accumulation of novel polyhydroxyalkanoates by bacteria. Biotechnol Lett 11:471–476

    Google Scholar 

  • Haywood GW, Anderson AJ, Ewing DF, Dawes EA (1990) Accumulation of a polyhydroxyalkanoate containing primarily 3-hydroxydecanoate from simple carbohydrate substrates by Pseudomonas sp. NCIMB 40135. Appl Environ Microbiol 56:3354–3359

    Google Scholar 

  • Hilger U, Sattler K, Littkowsky U (1991) Untersuchungen zur Wachstums-assoziierten Akkumulation von Poly-β-hydroxybuttersäure bei Methylobacterium rhodesianum. Z Zentralbl Mikrobiol 146:83–88

    Google Scholar 

  • Holmes PA, Wright LF, Collins SH (1981) β-Hydroxybutyrate polymers. European patent application no. EP 052459

  • Hosokawa Y, Shinomura Y, Harris RA, Ozawa T (1986) Determination of short-chain acyl-coenzyme A esters by high-performance liquid chromatography. Anal Biochem 153:45–49

    Google Scholar 

  • Huismann GW, Wonink E, Meima R, Kazemier B, Terpstra P, Witholt B (1991) Metabolism of poly(3-hydroxyalkanoates) by Pseudomonas oleovorans: identification and sequences of genes and function of the encoded proteins in the synthesis and degradation of PHA. J Biol Chem 266:2191–2198

    Google Scholar 

  • Hustede E, Steinbüchel A, Schlegel HG (1993) Relationship between the photoproduction of hydrogen and the accumulation of PHB in non-sulphur purple bacteria. Appl Microbiol Biotechnol 39:87–93

    Google Scholar 

  • Kaudewitz F (1959) Inaktivierende und mutagene Wirkung salpetriger Säure auf Zellen von Escherichia coli. Z Naturforsch 14b:528–537

    Google Scholar 

  • King MT, Reiss PD (1985) Separation and measurement of short-chain coenzyme A compounds in rat liver by reversed-phase high performance liquid chromatography. Anal Biochem 146:173–179

    Google Scholar 

  • Kuchta RD, Abeles RH (1985) Lactate reduction in Clostridium propionicum. J Biol Chem 260:13181–13189

    Google Scholar 

  • Kunioka M, Nakamura Y, Doi Y (1988) New Bacterial copolyesters produced in Alcaligenes eutrophus from organic acids. Polymer Commun 29:174–176

    CAS  Google Scholar 

  • Lemoigne M (1926) Produits de deshydration et de polymerisation de lácide β-oxybutyric. Bull Soc Chim Biol (Paris) 8:770–782

    Google Scholar 

  • Liebergesell M, Steinbüchel A (1992) Cloning and nucleotide sequences of genes relevant for biosynthesis of polyhydroxyalkanoic acid in Chromatium vinosum. Eur J Biochem 209:135–150

    Google Scholar 

  • Liebergesell M, Steinbüchel A (1993) Cloning and molecular characterization of the poly(3-hydroxybutyric acid) biosynthetic genes of Thiocystis violacea. Appl Microbiol Biotechnol 38:493–501

    Google Scholar 

  • Liebergesell M, Mayer F, Steinbüchel A (1993) Analysis of polyhydroxyalkanoic acid-biosynthesis genes of anoxygenic phototrophic bacteria reveals synthesis of a polyester exhibiting an unusual composition. Appl Microbiol Biotechno, in press

  • Mieyal JJ, Webster LT, Siddiqui UA (1974) Benzoyl and hydroxybenzoyl esters of coenzyme A. J Biol Chem 249:2633–2640

    Google Scholar 

  • Pedrós-Alio C, Mas J, Guerrero R (1985) The influence of poly-β-hydroxybutyrate accumulation on cell volume and buoyant density in Alcaligenes eutrophus. Arch Microbiol 143:178–184

    Google Scholar 

  • Pieper U (1993) Biosynthese eines Copolymers aus 3-Hydroxybuttersäure und 3-Hydroxyvaleriansäure in Rhodococcus ruber NCIMB 40126: Physiologische, molekulargenetische und biochemische Untersuchungen. Dissertation, Georg-August-Universität Göttingen

  • Pries A, Priefert H, Krüger N, Steinbüchel A (1991) Identification and characterization of two Alcaligenes eutrophus gene loci relevant to the poly(β-hydroxybutyric acid)-leaky phenotype which exhibit homology to ptsH and ptsI of Escherichia coli. J Bacteriol 173:5843–5853

    Google Scholar 

  • Rogosa M (1969) Acidaminococcus gen. n., Acidaminococcus fermentans sp. n., anaerobic Gram-negative diplococci using amino acids as the sole energy source for growth. J Bacteriol 98:756–766

    Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.

    Google Scholar 

  • Schlegel HG, Kaltwasser H, Gottschalk G (1961) Ein Submersverfahren zur Kultur wasserstoffoxidierender Bakterien: Wachstumsphysiologische Untersuchungen. Arch Mikrobiol 38:209–222

    CAS  PubMed  Google Scholar 

  • Schlegel HB, Lafferty RM, Krauss I (1970) The isolation of mutants not accumulating poly-β-hydroxybutyric acid. Arch Microbiol 71:283–294

    Google Scholar 

  • Schubert P, Steinbüchel A, Schlegel HG (1988) Cloning of the Alcaligenes eutrophus genes for synthesis of poly-β-hydroxybutyric acid (PHB) and synthesis of PHB in Escherichia coli. J Bacteriol 170:5837–5847

    Google Scholar 

  • Schubert P, Krüger N, Steinbüchel A (1991) Molecular analysis of the Alcaligenes eutrophus poly(3-hydroxybutyrate) biosynthetic operon: identification of the N-terminus of poly(3-hydroxybutyrate) synthase and identification of the promoter. J Bacteriol 173:168–175

    Google Scholar 

  • Schweiger G (1986) Untersuchugunen zum Mechanismus der enzymatischen Dehydrierung von 2-Hydroxysäuren. Dissertation, Universität Regensburg

  • Schweiger G, Buckel W (1984) On the dehydration of (R)-lactate in the fermentation of alanine to propionate by Clostridium propionicum. FEBS Lett 171:79–84

    Google Scholar 

  • Simon EJ, Shemin D (1953) The preparation of S-succinyl-coenzyme A. J Am Chem Soc 75:2520

    Google Scholar 

  • Steinbüchel A (1991a) Polyhydroxyalkanoic acids. In: Byrom D (ed) Biomaterials. MacMillan, London, pp 123–213

    Google Scholar 

  • Steinbüchel A (1991b) Polyhydroxyfettsäuren — thermoplastisch verformbare und biologisch abbaubare Polyester aus Bakterien. Nachrichtenbl Chem Tech Lab 39:1112–1124

    Google Scholar 

  • Steinbüchel A, Pieper U (1992) Production of a copolyester of 3-hydroxybutyric acid and 3-hydroxyvaleric acid by a mutant of Alcaligenes eutrophus from single unrelated carbon sources. Appl Microbiol Biotechnol 37:1–6

    Google Scholar 

  • Steinbüchel A, Schlegel HG (1981) Die relative Respirationsrate (RRR), ein neuer Belüftungsparameter. In: Lafferty RM (ed) Fermentation. Springer, Vienna, pp 11–26

    Google Scholar 

  • Steinbüchel A, Schlegel HG (1991) Genetics of poly(β-hydroxyalkanoic acid) synthesis in Alcaligenes eutrophus. Mol Microbiol 5:535–542

    Google Scholar 

  • Steinbüchel A, Hustede E, Liebergesell M, Timm A, Pieper U, Valentin H (1992) Molecular basis for biosynthesis and accumulation of polyhydroxyalkanoic acids in bacteria. FEMS Microbiol Rev 103:217–230

    Google Scholar 

  • Timm A, Steinbüchel A (1990) Formation of polyesters consisting of medium-chain-length 3-hydroxy alkanoic acids from gluconate by Pseudomonas aeruginosa and other fluorescent pseudomonads. Appl Environ Microbiol 56:3360–3367

    Google Scholar 

  • Valentin HE, Schönebaum A, Steinbüchel A (1992) Identification of 4-hydroxyvaleric acids as a constituent in biosynthetic polyhydroxyalkanoic acids from bacteria. Appl Microbiol Biotechnol 36:507–514

    Google Scholar 

  • Vert M (1986) Biomedical polymers from chiral lactides and functional lactones. Properties and applications. Macromol Chem Macromol Symp 6:109–122

    Google Scholar 

  • Webster LT, Killenberg PG (1981) Coenzyme A thioesters of benzoic, hydroxybenzoic, phenylacetic, and bile acids. Methods Enzymol 77:430–436

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Correspondence to: A. Steinbüchel

Rights and permissions

Reprints and permissions

About this article

Cite this article

Valentin, H.E., Steinbüchel, A. Application of enzymatically synthesized short-chain-length hydroxy fatty acid coenzyme A thioesters for assay of polyhydroxyalkanoic acid synthases. Appl Microbiol Biotechnol 40, 699–709 (1994). https://doi.org/10.1007/BF00173332

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00173332

Keywords

Navigation