Skip to main content
Log in

Cellular and immunological markers of allergic and intrinsic bronchial asthma

  • Review
  • Published:
Lung Aims and scope Submit manuscript

Abstract

Based on a growing body of evidence, allergic as well as intrinsic bronchial asthma have recently been defined as chronic persistent inflammatory disorders. Agreement has been reached that asthma can no longer be equated with bronchospasm only, and that the absence of reversibility of airflow obstruction does not exclude bronchial asthma. Bronchial hyperreactivity, on the other hand, although common to the vast majority of asthmatics, is not specific for bronchial asthma and provocation tests to measure bronchial hyperreactivity are not suited for routine monitoring of bronchial asthma. The clinical features of asthma are related to cellular as well as to soluble parameters of bronchial inflammation. Therefore, means of assessing and monitoring asthmatic inflammation have been investigated. Since eosinophils, T lymphocytes, mast cells, macrophages, neutrophils, epithelial cells, and structural cells, as well as various proinflammatory mediators and proteins, have been implicated in the pathogenesis of bronchial asthma, it has been anticipated that several of these cells or mediators might be either diagnostic of bronchial asthma or could serve as markers to monitor the underlying bronchial inflammation. Currently there is no diagnostic marker of bronchial asthma, which, on its own, either confirms or excludes bronchial asthma with appropriate sensitivity and specificity. Clinically the most reliable feature of bronchial asthma that seems to be related closely to the symptomatology still is the presence of eosinophils in peripheral blood, and especially in sputum. Eosinophil-derived products, particularly eosinophil granule proteins, have been investigated as markers of eosinophil participation in the pathogenesis of asthma and, comparable to eosinophil numbers themselves, are possible predictors of impending exacerbations of allergic, as well as intrinsic bronchial asthma. However, clinically their precise value in diagnosing and monitoring of bronchial asthma has not been documented convincingly and requires further investigation. Increasing data suggest that the regulation of eosinophilia is largely conveyed by interleukin-5 (IL-5) released from activated T-helper lymphocytes and possibly other cells. Therefore, T-lymphocyte activation, and especially assessment of systemic and local IL-5 levels, might be of diagnostic value and possibly useful in monitoring of inflammation in bronchial asthma in the future. A possible role and future applications for other markers of inflammation not related to eosinophils in monitoring or diagnosing bronchial asthma need to be established.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aalbers, R, de Monchy JGR, Kaufman HF, Smith M, Hoekstra, Vrugt B, Timens W (1993) Dynamics of eosinophil infiltration in the bronchial mucosa before and after the late asthmatic reaction Eur Respir J 6:840–847.

    Google Scholar 

  2. Ackerman SJ, Kephart GM, Habermann TM, Greipp PR, Gleich GJ (1983) Localisation of eosinophil granule major basic protein in human basophils. J Exp Med 158:946–961

    Google Scholar 

  3. Ackerman SJ, Weil GJ, Gleich GJ (1982) Formation of Charcot-Leyden crystals by human basophils. J Exp Med 155:1597–1609

    Google Scholar 

  4. Bachner RL, Johnston RB (1971) Metabolic and bactericidal activities of human eosinophils. Br J Haematol 20:277–285

    Google Scholar 

  5. Baigelman W, Chodosh S, Pizzuto D, Cupples A (1983) Sputum and blood cosinophilia during corticosteroid treatment of acute exacerbations of asthma. Am J Med 75:929–936

    Google Scholar 

  6. Batter MS, Eschenbacher WL, Peters-Golden M (1988) Arachidonic acid metabolism in cultured alveolar macrophages from normal, atopic, and asthmatic subjects. Am Rev Respir Dis 138:1134–1142

    Google Scholar 

  7. Barnes PJ (1989) A new approach to the treatment of asthma. N Engl J Med 321:1517–1527

    Google Scholar 

  8. Beasley R, Roche WR, Roberts JA, Holgate ST (1989) Cellular events in the bronchi in mild asthma and after bronchoprovocation. Am Rev Respir Dis 139:806–817

    Google Scholar 

  9. Bentley AM, Maestrelli P, Saetta M, Fabbri LM, Robinson DS, Bradley BL, Jeffrey PK, Durham SR, Kay AB (1992) Activated T-lymphocytes and eosinophils in the bronchial mucosa in isocyanate-induced asthma. J Allergy Clin Immunol 89:821–829

    Google Scholar 

  10. Bentley AM, Menz G, Storz C, Robinson DS, Bradley B, Jeffrey PK, Durham SR, Kay AB (1992) Identification of T-lymphocytes, macrophages, and activated eosinophils in the bronchial mucosa in intrinsic asthma. Relationship to symptoms and bronchial responsiveness. Am Rev Respir Dis 146:500–506

    Google Scholar 

  11. Blumberg MZ, Buckley JM (1976) The total eosinophil count in asthmatic children. J Allergy Clin Immunol 57:493–498

    Google Scholar 

  12. 12. Boner AL, Peroni DG, Piacentini GL, Venge P (1993) Influence of allergen avoidance at high altitude on serum markers of eosinophil activation in children with allergic asthma. Clin Exp Allergy 23 (in press)

  13. Bosso JV, Schwartz LB, Stevenson DD (1991) Tryptase and histamine release during aspirin-induced respiratory reactions. J Allergy Clin Immunol 88:830–837

    Google Scholar 

  14. Bousquet J, Chanez P, Lacoste JY, Barneon G, Ghavanian N, Enander I, Venge P, Ahlstedt S, Simony-Lafontaine J, Godard P, Michel FB (1991) Eosinophilic inflammation in asthma. N Engl J Med 323:1033–1039

    Google Scholar 

  15. Bousquet J, Chanez P, Lacoste JY, Enander I, Venge P, Peterson C, Ahlstedt S, Michel FB, Godard P (1991) Indirect evidence of bronchial inflammation assessed by titration of inflammatory mediators in BAL fluid of patients with asthma. J Allergy Clin Immunol 88:649–660

    Google Scholar 

  16. Bradding P, Feather IH, Howarth PH, Mueller R, Roberts JA, Britten K, Bews JPA, Hunt TC, Okayama Y, Heusser CH, Bullock GR, Church MK, Holgate ST (1992) Interleukin 4 is localized to and released by human mast cells. J Exp Med 176:1381–1386

    Google Scholar 

  17. Bradley BL, Azzawi M, Jacobson M, Assoufi B, Collins JV, Irani AM, Schwartz LB, Durham SR, Jeffrey PK, Kay AB (1991) Eosinophils, T-lymphocytes, mast cells, neutrophils, and macrophages in bronchial biopsy specimens from atopic subjects with asthma: Comparison with biopsy specimens from atopic subjects and relation to bronchial hyperresponsiveness. J Allergy Clin Immunol 88:661–674

    Google Scholar 

  18. Broide DH, Gleich GJ, Cuomo AS, Coburn DA, Federman EC, Schwartz LB, Wasserman SI (1991) Evidence of ongoing mast cell and eosinophil degranulation in symptomatic asthmatic airways. J Allergy Clin Immunol 80:637–648

    Google Scholar 

  19. Broide DH, Lotz M, Cuomo A, Coburn DA, Federman EC, Wasserman SI (1992) Cytokines in symptomatic asthma airways. J Allergy Clin Immunol 89:958–967

    CAS  PubMed  Google Scholar 

  20. Brown HM (1958) Treatment of chronic asthma with prednisolone—Significance of eosinophils in the sputum. Lancet ii:1245–1247

    Google Scholar 

  21. Brown PH, Crompton GK, Greening AP (1991) Proinflammatory cytokines in acute asthma. Lancet 338:590–593

    Google Scholar 

  22. Bruijnzeel PLB, Virchow J-C, Ribs S, Walker C, Verhage J (1993) Lack of increased numbers of low-density eosinophils in the circulation of asthmatic individuals. Clin Exp Allergy 23:261–269

    Google Scholar 

  23. Carlson M, Hakansson L, Peterson C, Stalenheim G, Venge P (1991) Secretion of granule proteins from eosinophils and neutrophils is increased in asthma. J Allergy Clin Immunol 87:27–33

    Google Scholar 

  24. Casale TB, Wood D, Richerson HB, Zehr B, Zavala D, Hunninghake GW (1978) Direct evidence of a role for mast cells in the pathogenesis of antigen-induced bronchoconstriction. J Clin Invest 80:1507–1511

    Google Scholar 

  25. Chanez P, Bousquet J, Couret I, Cornillac L, Barneon, Vic P, Michel FB, Godard P (1991) Increased numbers of hypodense alveolar macrophages in patients with bronchial asthma. Am Rev Respir Dis 144:923–930

    Google Scholar 

  26. Charcot JM, Robin C (1853) Observation de Leucocythemie. C R Mem Soc Biol 5:44–50

    Google Scholar 

  27. Chodosh S (1970) Examination of sputum cells. N Engl J Med 282:854–857

    Google Scholar 

  28. Church MK, Hiroi J (1987) Inhibition of IgE dependent histamine release from human dispersed mast cells by anti-allergic drugs and salbutamol. Br J Pharmacol 90:421–429

    Google Scholar 

  29. Clutterbuck EJ, Hirst EMA, Sanderson CJ (1988) Human Intereukin-5 (IL-5) regulates the production of eosinophils in human bone marrow cultures: Comparison with IL-1, IL-3, IL-6 and GM-CSF. Blood 73:1504–1512

    Google Scholar 

  30. Cookson WOCM, Craddock CF, Benson MK, Durham SR (1989) Falls in peripheral eosinophil counts parallel the late asthmatic response. Am Rev Respir Dis 139:458–462

    Google Scholar 

  31. Corrao WM, Braman SS, Irwin RS (1979) Chronic cough as the sole presenting manifestation of bronchial asthma. N Engl J Med 300:633–637

    Google Scholar 

  32. Corrigan CJ, Haczku A, Gemou-Engesaeth V, Doi S, Kikuchi Y, Takatsu K, Durham SR Kay AB (1993) CD4 T-lymphocytes activation in asthma is accompanied by increased serum concentrations of interleukin-5. Effect of glucocorticoid therapy. Am Rev Respir Dis 147:540–547

    Google Scholar 

  33. Corrigan CJ, Kay AB (1990) CD4 T-lymphocyte activation in acute severe asthma. Am Rev Respir Dis 141:970–977

    Google Scholar 

  34. Crane J, Pearce N, Flatt A, Burgess C, Jackson R, Kwong T, Ball M, Beasley R (1989) Prescribed fenoterol and death from asthma in New Zealand, 1981–83: Case control study. Lancet i:917–922

    Google Scholar 

  35. Crimi E, Chiaramondia M, Milanese M, Rossi GA, Brusasco V (1991) Increased numbers of mast cells in bronchial mucosa after the late-phase asthmatic response to allergen. Am Rev Respir Dis 144:1282–1286

    Google Scholar 

  36. Curschmann H (1883) Ueber Bronchiolitis exudativa und ihr Verhältnis zum asthma nervosum. Dtsch Arch Klin Med 32:1

    Google Scholar 

  37. Dahl R, Venge P, Olsson I (1978) Variations of blood eosinophilia and eosinophil cationic protein in serum in patients with bronchial asthma. Allergy 33:211–215

    Google Scholar 

  38. De Monchy JG, Kaufmann HF, Venge P, Koeter GH, Jansen HM, Sluiter HJ, de Vries K (1985) Bronchoalveolar eosinophilia during allergen-induced late asthmatic reactions. Am Rev Respir Dis 131:373–376

    Google Scholar 

  39. Denburg JA, Dolovich J, Ohtoshi T, Cox G, Gauldie J, Jordana M (1990) The microenvironmental differentiation hypothesis of airway inflammation. Am J Rhinol 4:29–32

    Google Scholar 

  40. Dent LA, Strath M, Mellor AL, Sanderson CJ (1990) Eosinophilia in transgenic mice expressing interleukin-5. J Exp Med 172:1425–1431

    Google Scholar 

  41. Djukanovic R, Wilson JW, Britten KM, Wilson SJ, Walls AF, Roche WR, Howarth PH, Holgate ST (1990) Quantitation of mast cells and eosinophils in the bronchial mucosa of symptomatic atopic asthmatics and healthy control subjects using immunohistochemistry. Am Rev Respir Dis 142:863–871

    Google Scholar 

  42. Dor PJ, Ackerman SJ, Gleich GJ (1984) Charcot-Leyden crystal protein and eosinophil granule major basic protein in sputum of patients with respiratory diseases. Am Rev Respir Dis 130:1072–1077

    Google Scholar 

  43. Durham SR, Kay AB (1985) Eosinophils, bronchial hyperreactivity and late-phase asthmatic reactions. Clin Allergy 15:411–418

    Google Scholar 

  44. Durham SR, Leogering DA, Dunette S, Gleich GJ, Kay AB (1989) Blood eosinophils and eosinophil-derived proteins in allergic asthma. J Allergy Clin Immunol 84:931–936

    Google Scholar 

  45. 45. Ehrlich P, (1879) Ueber die speziflschen Granulationen des Blutes. Arch Anat Physiol (Physiol Abt) 571–579

  46. Epstein MRL (1972) Constituents of sputum: A simple method. Ann Intern Med 77:259–265

    Google Scholar 

  47. Ernst P, Habbick B, Suissa S, Hemmelgarn B, Cockroft D, Buist AS, Horwitz RI, McNutt M, Spitzer WO (1993) Is the association between inhaled beta-agonist use and life-threatening asthma because of confounding by severity? Am Rev Respir Dis 148:75–79

    Google Scholar 

  48. Evans PM, O'Conner BJ, Fuller RW, Barnes PJ, Chung KF (1993) Effect of inhaled corticosteroids on peripheral blood eosinophil counts and density profiles in asthma. J Allergy Clin Immunol 91:643–550

    Google Scholar 

  49. Feltelius N, Hallgren R, Venge P (1987) Raised circulating levels of the eosinophil cationic protein in ankylosing spondylitis: Relation with the inflammatory activity and the influence of sulphasalazine treatment. Ann Rheum Dis 46:403–407

    Google Scholar 

  50. Filley WV, Holley KE, Kephart GM, Gleich GJ (1987) Identification by immunofluorescence of eosinophil granule major basic protein in lung tissues of patients with bronchial asthma. Lancet ii:11–16

    Google Scholar 

  51. Frick WE, Sedgwick JB, Busse WW (1989) The appearance of hypodense eosinophils in antigen-dependent late phase asthma. Am Rev Respir Dis 139:1401–1406

    Google Scholar 

  52. Frigas E, Loegering DA, Gleich GJ (1980) Cytotoxic effects of the guinea pig eosinophil major basic protein on tracheal epithelium. Lab Invest 42:35–43

    Google Scholar 

  53. Frigas E, Loegering DA, Solley GO, Farrow GM, Gleich GJ (1981) Elevated levels of the eosinophil granule major basic protein in the sputum of patients with bronchial asthma. Mayo Clin Proc 56:345–353

    Google Scholar 

  54. Fukuda T, Dunette SL, Reed CE, Ackerman SJ, Peters MS, Gleich GJ (1985) Increased numbers of hypodense eosinophils in the blood of patients with bronchial asthma. Am Rev Respir Dis 132:981–985

    Google Scholar 

  55. Gibson PG, Dolovich J, Denburg J, Ramsdale EH, Hargreave FE (1989) Chronic cough: Eosinophilic bronchitis without asthma. Lancet i:1346–1348

    Google Scholar 

  56. Gibson PG, Girgis-Gabardo A, Morris MM, Mattoli S, Kay JM, Dolovich J, Denburg J, Hargreave FE (1989) Cellular characteristics of sputum from patients with asthma and chronic bronchitis. Thorax 44:693–699

    Google Scholar 

  57. Gleich GJ, Adolphson CR (1986) The eosinophil leukocyte: Structure and function. Adv Immunol 39:177–253

    Google Scholar 

  58. Gleich GJ, Loegering DA, Mann KG, Maldonado JE (1976) Comparative properties of the charcot-Leyden crystal protein from human eosinophils. J Clin Invest 57:633–640

    Google Scholar 

  59. Gollasch H (1889) Zur Kenntnis des Asthmatischen Sputums. Fortschr Med 7:361–365

    Google Scholar 

  60. Gordon JR, Post T, Schulman ES, Galli SJ (1991) Characterisation of mouse mast cell TNF-α induction in vitro and in vivo and demonstration that purified human lung mast cells contain TNFα. FASEB J 5:A1009

    Google Scholar 

  61. Gosset P, Tsicopoulos A, Wallaert B, Vannimenus C, Joseph M, Tonnel AB, Capron A (1991) Increased secretion of tumor necrosis factor alpha and interleukin-6 by alveolar macrophages consecutive to the development of the late asthmatic reaction. J Allergy Clin Immunol 88:561–572

    Google Scholar 

  62. Griffin E, Hakansson L, Formgren H, Jörgensen K, Peterson C, Venge P (1991) Blood eosinophil number and activity in relation to lung function in patients with asthma and with eosinophilia. J Allergy Clin Immunol 87:548–557

    Google Scholar 

  63. Gundel RH, Letts LG, Gleich GJ (1991) Human eosinophil major basic protein induces airway constriction and airway hyperresponsiveness in primates. J Clin Invest 87:1470–1473

    Google Scholar 

  64. Hallgren R, Venge P, Wisstedt B (1982) Elevated levels of lactoferrin and eosinophil cationic protein in schizophrenic patients. Br J Psychiatry 140:55–60

    Google Scholar 

  65. Hansel TT, Braunstein JB, Walker C, Blaser K, Bruijnzeel PLB, Virchow J-C, Jr, Virchow C, Sr (1991) Sputum eosinophils from asthmatics express ICAM-1 and HLA-DR. Clin Exp Immunol 86:271–277

    Google Scholar 

  66. Harding SM, Freedman S (1978) A comparison of oral and inhaled steroids in patients with chronic airways obstruction: Features determining response. Thorax 33:214–218

    Google Scholar 

  67. Hargreave FE, Ryan G, Thomson NC, O'Byrne PM, Latimer K, Juniper EF, Dolovich J (1981) Bronchial responsiveness to histamine or methacholine in asthma: Measurement and clinical significance. J Allergy Clin Immunol 68:347–355

    Google Scholar 

  68. Henderson LL, Swedlund HA, VanDellen RG, Marcoux JP, Carryer HM, Peters GA, Gleich GJ (1971) Evaluation of IgE levels in an allergy practice. J Allergy Clin Immunol 48:361–365

    Google Scholar 

  69. Hetzel MR, Clark TJH (1980) Comparison of normal and asthmatic circadian rhythms in peak expiratory flow rate. Thorax 35:732–738

    Google Scholar 

  70. Horn BR, Robin ED, Theodore J, Van Kessel A (1975) Total eosinophil counts in the management of bronchial asthma. N Engl J Med 292:1152–1155

    Google Scholar 

  71. Howarth PH, Durham SR, Lee TH, Kay AB, Church MK, Holgate ST (1985) Influence of albuterol, cromolyn sodium and ipratropium bromide on the airway and circulating mediator response to allergen bronchial provocation in asthma. Am Rev Respir Dis 132:986–992

    Google Scholar 

  72. International Consensus Report on Diagnosis and Treatment of Asthma (1992) National Heart, Lung, and Blood Institute, Publication No. 92–3091. Eur Respir J 5:601–641

    Google Scholar 

  73. Irani AA, Schechter NM, Craig SS, DeBlois G, Schwartz LB (1986) Two types of human mast cells that have distinct neutral protease composition. Proc Natl Acad Sci USA 83:4464–4468

    Google Scholar 

  74. Juliusson S, Holmberg K, Baumgarten CR, Olsson M, Enander I, Pipkorn U (1991) Tryptase in nasal lavage fluid after local allergen challenge. Allergy 46:459–465

    Google Scholar 

  75. Juntunen-Backman K, Järvinen P, Sorva R (1993) Serum eosinophil cationic protein during treatment of asthma in children. J Allergy Clin Immunol 92:34–38

    Google Scholar 

  76. Kauffman HF, van der Belt B, de Monchy JG, Boelens H, Koeter GH, de Vries K (1987) Leukotriene C4 production by normal density and low density eosinophils of atopic individuals and other patients with eosinophilia. J Allergy Clin Immunol 79:611–619

    Google Scholar 

  77. Kay AB, Bacon GD, Mercer BA, Simpson H, Crofton JW (1974) Complement components and IgE in bronchial asthma. Lancet ii:916–920

    Google Scholar 

  78. Kendrick AH, Higgs CMB, Whitfield MJ, Laszlo G (1993) Accuracy of perception of severity of asthma: Patients treated in general practice. Br Med J 307:422–1124

    Google Scholar 

  79. Kita H, Ohnishi T, Okubo Y, Weiler D, Abrams JS, Gleich GJ (1991) Granulocyte/macrophage colony-stimulating factor and interleukin-3 release from human peripheral blood eosinophils and neutrophils. J Exp Med 174:745–748

    Google Scholar 

  80. Klink M, Cline MG, Halonen M, Burrows B (1990) Problems in defining normal limits for serum IgE. J Allergy Clin Immunol 85:440–444

    Google Scholar 

  81. Lacoste J-Y, Bousquet J, Chanez P, Van Vyve T, Simony-Lafontaine J, Lequeu N, Vic P, Enander I, Godard P, Michel FB (1993) Eosinophilic and neutrophilic inflammation in asthma, chronic bronchitis, and chronic obstructive pulmonary disease. J Allergy Clin Immunol 92:537–548

    Google Scholar 

  82. Laitinen LA, Heino M, Laitinen A, Kava T, Haahtela T (1985) Damage of the airway epithelium and bronchial reactivity in patients with asthma. Am Rev Respir Dis 131:599–606

    Google Scholar 

  83. Laitinen LA, Laitinen A, Haahtela T (1992) A comparative study of the effects of an inhaled corticosteroid, budesonide, and a β2-agonist, terbutaline, on airway inflammation in newly diagnosed asthma: A randomized, double blind, parallel-group controlled trial. J Allergy Clin Immunol 90:32–42

    Google Scholar 

  84. Lam S, LeRiche J, Phillips D, Chan-Young M (1987) Cellular and protein changes in bronchial lavage fluid after late asthmatic reaction in patients with red cedar asthma. Am Rev Respir Dis 80:44–50

    Google Scholar 

  85. Lassalle P, Sergant M, Delneste Y, Gosset P, Wallaert B, Zandecki M, Capron A, Joseph M, Tonnel AB (1992) Levels of soluble IL-2 receptor in plasma from asthmatics. Correlations with blood eosinophils, lung function, and corticosteroid therapy. Clin Exp Immunol 87:266–271

    Google Scholar 

  86. Laviolette M, Cormier Y, Loiseau A, Soler P, Leblanc P, Hance AJ (1991) Bronchoalveolar mast cells in normal and farmers and subjects with farmer's lung. Diagnostic, prognostic, and physiologic significance. Am Rev Respir Dis 144:855–860

    Google Scholar 

  87. Leyden E (1872) Zur Kentniss des Bronchial Asthma. Virchows Arch (Pathol Anat) 54:324–344

    Google Scholar 

  88. Lopez AF, Sanderson CJ, Gamble JR, Campell HD, Young IG, Vadas MA (1988) Recombinant human interleukin-5 is a selective activator of human eosinophil function. J Exp Med 167:219–224

    Google Scholar 

  89. Lowell FC (1967) Clinical aspects of eosinophilia in atopic disease. JAMA 202:875–878

    Google Scholar 

  90. Luksza AR, Jones DK (1982) Comparison of whole-blood eosinophil counts in extrinsic asthmatics with acute and chronic asthma. Br Med J 285:1229–1231

    Google Scholar 

  91. Marsh DG, Bias WB, Ishizaka K (1974) Genetic control of basal serum immunoglobulin E levels and its effect on specific reaginic sensitivity. Proc Natl Acad Sci USA 71:3588–3592

    Google Scholar 

  92. Mattoli S, Mattoso VL, Soloperto M, Allegra L, Fasoli A (1991) Cellular and biochemical characteristics of bronchoalveolar lavage fluid in symptomatic nonallergic asthma. J Allergy Clin Immunol 87:794–802

    Google Scholar 

  93. Mattoli S, Soloperto M, Marini M, Fasoli A (1991) Levels of endothelin in the bronchoalveolar lavage fluid of patients with symptomatic asthma and reversible airflow obstruction. J Allergy Clin Immunol 88:376–384

    Google Scholar 

  94. Medici TC, Chodosh S (1972) Sputum cell dynamics in bacterial exacerbations of chronic bronchial disease. Arch Intern Med 129:597–603

    Google Scholar 

  95. Mossman TR, Coffman RL (1987) Two types of mouse helper T cell clones. Implications for immune regulation. Immunol Today. 8:223–227

    Google Scholar 

  96. Motojima S, Frigas E, Loegering DA, Gleich GJ (1989) Toxicity of eosinophil cationic proteins for guinea pig tracheal epithelium in vitro. Am Rev Respir Dis 139:801–805

    Google Scholar 

  97. Moulder J (1980) Bacteriological examination of sputum in cases of acute and chronic bronchitis. In: Orie NGM, Sluiter JH (eds) Bronchitis: An international symposium, April 1960, University of Groningen. Royal Van Gorcum, Assen, pp 27–29

    Google Scholar 

  98. Naylor B (1962) The shedding of the mucosa of the bronchial tree in asthma. Thorax 17:69–72

    Google Scholar 

  99. Olson RL, Little C (1983) Purification and some properties of myeloperoxidase and eosinophil peroxidase from human blood. Biochem J 209:781–787

    Google Scholar 

  100. Olsson I, Venge P, Spitznagel JK, Lehrer RI (1977) Arginine-rich cationic proteins of human eosinophil granules. Comparison of the constituents of eosinophilic and neutrophilic leukocytes. Lab Invest 36:493–500

    Google Scholar 

  101. Owen WF, Rothenberg ME, Silberstein DS, Gasson JC, Stevens RL, Austen KF, Soberman RJ (1987) Regulation of human eosinophil viability, density, and function by granulocyte-macrophage colony-stimulating factor in the presence of T3T fibroblasts. J Exp Med 166: 129–141

    Article  CAS  PubMed  Google Scholar 

  102. Park CS, Lee SM, Uh ST, Kim HT, Chung YT, Kim YH, Choi BW, Hue SH, Lee HB (1993) Soluble interleukin-2 receptor and cellular profiles in bronchoalveolar lavage fluid from patients with bronchial asthma. J Allergy Clin Immunol 91:623–633

    Google Scholar 

  103. Parronchi P, Macchia D, Piccinni M-P, Biswas P, Simonelli C, Maggi E, Ricci M, Ansari AA, Romagnani S (1991) Allergen- and bacterial antigen-specific T-cell clones established from atopic donors show a different profile of cytokine production. Proc Natl Acad Sci USA 88:4538–4542

    Google Scholar 

  104. Peterson CG, Venge P (1983) Purification and characterization of a new cationic protein-eosinophil protein-X (EPX)—from granules of human eosinophils. Immunology 50:19–26

    Google Scholar 

  105. Plant M, Pierce JH, Watson CJ, Hanley-Hyde J, Nordan RP, Paul W (1989) Mast cell lines produce lymphokines in response to cross-linkage of FceRI or to calcium ionophores. Nature 339:64–67

    Google Scholar 

  106. Poulter LW, Rossi GA, Bjermer L, Costabel U, Israel-Biet D, Klech H, Pohl W, Semenzato G (1992) The value of bronchoalveolar lavage in the diagnosis and prognosis of sarcoidosis. Eur Respir Rev 2:75–82

    Google Scholar 

  107. Rackemann FM (1947) A working classification of asthma. Am J Med 3:601–606

    Google Scholar 

  108. Rak S, Löwhagen O, Venge P (1988) The effect of immunotherapy on bronchial hyper-responsiveness and eosinophil cationic protein in pollen-allergic patients. J Allergy Clin Immunol 82:470–480

    Google Scholar 

  109. Robinson DS, Hamid Q, Ying S, Tsicopoulos A, Barkans J, Bentley AM, Corrigan C, Durham SR, Kay AB (1992) Predominant TH2-like bronchoalveolar T-lymphocyte population in atopic asthma. N Engl J Med 326:298–304

    CAS  PubMed  Google Scholar 

  110. Rothenberg ME, Owen WF, Silberstein DS, Soberman RJ, Austen KF, Stevens RL (1988) Human eosinophils have prolonged survival, enhanced functional properties, and become hypodense when exposed to human interleukin-3. J Clin Invest 81:1986–1992

    Google Scholar 

  111. Saetta M, Di Stefano A, Maestrelli P, Ferraresso A, Drigo R, Potena A, Ciaccia A, Fabbri LM (1993) Activated T-lymphocytes and macrophages in bronchial mucosa of subjects with chronic bronchitis. Am Rev Respir Dis 147:301–306

    Google Scholar 

  112. Sanerkin NG, Evans DMD (1965) The sputum in bronchial asthma: Pathognomonic patterns. J Pathol Bacteriol 89:535–541

    Google Scholar 

  113. Schüler M, Costabel U, Virchow J-C, Jr, Kortsik C, Hasse J, Matthys H, Kroegel C (1993) Serum eosinophil cationic protein (ECP) levels in disease. A prospective study on 549 patients. J Allergy Clin Immunol 91:A179

    Google Scholar 

  114. Sears MR, Burrows B, Flannery EM, Herbison GP, Hewitt CJ, Holdaway MD (1991) Relation between airway responsiveness and serum IgE in children with asthma and in apparently normal children. N Engl J Med 325:1067–1071

    Google Scholar 

  115. Sears MR, Taylor DR, Print CG, Lake DC, Li Q, Flannery EM, Yates DM, Lucas MK, Herbison GP (1990) Regular inhaled beta-agonist treatment in bronchial asthma. Lancet 336: 1391–1396

    Google Scholar 

  116. Sladek K, Szczeklik A (1993) Cysteinyl leukotrienes overproduction and mast cell activation in aspirin-provoked bronchospasm in asthma. Eur Respir J 6:391–399

    Google Scholar 

  117. Slifman NR, Venge P, Peterson CG, McKean DJ, Gleich GJ (1989) Human eosinophil-derived neurotoxin and eosinophil protein X are likely the same protein. J Immunol 143:2317–2322

    Google Scholar 

  118. Spitzer WO, Suissa S, Ernst P, Horwitz RI, Habbick B, Cockroft D, Boivin J-F, McNutt M, Buist AS, Rebuck AS (1992) The use of beta-agonists and the risk of death and near death from asthma. N Engl J Med 326:501–506

    Google Scholar 

  119. Tai PC, Spry CJ, Peterson C, Venge P, Olsson I (1984) Monoclonal antibodies distinguish between storage and secreted forms of eosinophil cationic protein. Nature 309:182–184

    Google Scholar 

  120. Taylor KJ, Luksza AR (1987) Peripheral blood eosinophil counts and bronchial responsiveness. Thorax 42:452–456

    Google Scholar 

  121. Tomioka M, Ida S, Ishihara T, Takashima T (1984) Mast cells in bronchoalveolar lumen of patients with bronchial asthma. Am Rev Respir Dis 129:1000–1005

    Google Scholar 

  122. Tunon de Lara JM, Okayama Y, McEuen AR, Heusser CH, Church MK, Walls AF (1993) Mast cell proteases can degrade interleukin-4 (IL-4). Eur Respir J 6:367s

    Google Scholar 

  123. Vanhoutte PM (1988) Epithelium-derived relaxing factor(s) and bronchial hyperreactivity. Am Rev Respir Dis 138:S24-S30

    Google Scholar 

  124. Venge P (1990) The human eosinophil in inflammation. Agents Actions 29:122–126

    Google Scholar 

  125. Venge P, Dahl R, Fredens K, Peterson CGB (1988) Epithelial injury by human eosinophils. Am Rev Respir Dis 138:S54-S57

    Google Scholar 

  126. Venge P, Henrikson J, Dahl R (1991) Eosinophils in exercise-induced asthma. J Allergy Clin Immunol 88:699–704

    Google Scholar 

  127. Venge P, Roxin LE, Olsson I(1977) Radioimmunoassay of human eosinophil cationic protein. Br J Haematol 37:331–335

    Google Scholar 

  128. Viera VG, Prolla J-C (1979) Clinical evaluation of eosinophils in the sputum. J Clin Pathol 32:1054–1057

    Google Scholar 

  129. Virchow C, Sr (1973) Intrinsic asthma. Prax Klin Pneumol 27:578–591

    Google Scholar 

  130. Virchow C, Sr, Möller E, Debelic M (1971) IgE-Serumspiegelbestimmungen bei chronischobstruktiven Atemwegsleiden. Pneumologie-Pneumology 145:428–440

    Google Scholar 

  131. Virchow J-C, Jr, Hölscher U, Virchow C, Sr (1992) Sputum ECP levels correlate with parameters of airflow obstruction. Am Rev Respir Dis 146:604–606

    Google Scholar 

  132. Virchow J-C, Jr, Kroegel C, Hage U, Kortsik C, Matthys H, Werner P (1993) Comparison of sputum ECP levels in bronchial asthma and chronic bronchitis. Allergy 48(Suppl):112–118

    Google Scholar 

  133. Virchow J-C, Jr, Walker C, Häfner D, Kortsik C, Werner P, Engelstätter R, Blaser K, Luttmann W, Matthys H, Kroegel C (1993) Cytokine networking in asthmatic inflammation. Its role in lymphocyte and eosinophil activation. Eur Respir J 6 (Suppl 17):514s

  134. Walker C, Bode E, Boer L, Hansel TT, Blaser K, Virchow J-C, Jr (1992) Allergic and nonallergic asthmatics have distinct patterns of T-cell activation and cytokine production in peripheral blood and bronchoalveolar lavage. Am Rev Respir Dis 146:109–115

    Google Scholar 

  135. Walker C, Kaegi MK, Braun P, Blaser K (1991) Activated T cells and eosinophilia in bronchoalveolar lavages from subjects with asthma correlated with disease severity. J Allergy Clin Immunol 88:935–942

    Google Scholar 

  136. Walker C, Virchow J-C, Jr, Bruijnzeel PLB, Blaser K (1991) T cell subsets and their soluble products regulate eosinophilia in allergic and nonallergic asthma. J Immunol 146:1829–1835

    Google Scholar 

  137. Wardlaw AJ, Dunette S, Gleich GJ, Collins JV, Kay AB (1988) Eosinophils and mast cells in bronchoalveolar lavage in subjects with mild asthma. Am Rev Respir Dis 137:62–69

    Google Scholar 

  138. Weller PF, Goetzl EJ, Austen KF (1980) Identification of human eosinophil lysophospholipase as the constituent of Charcot-Leyden crystals. Proc Natl Acad Sci USA 77:7440–7443

    Google Scholar 

  139. Wempe JB, Tammeling EP, Koeter GH, Hakansson L, Venge P, Postma DS (1992) Blood eosinophil numbers and activity during 24 hours: Effects of treatment with budesonide and bambuterol. J Allergy Clin Immunol 90:757–765

    Google Scholar 

  140. Wenzel SE, Fowler AA III, Schwartz LB (1988) Activation of pulmonary mast cells by bronchoalveolar allergen challenge: In vivo release of histamine and tryptase in atopic subjects with and without asthma. Am Rev Respir Dis 137:1002–1008

    Google Scholar 

  141. Wittig HJ, Belloit J, De Fillippi I, Royal G (1980) Age-related serum immunoglobulin E levels in healthy subjects and in patients with allergic disease. J Allergy Clin Immunol 66:305–313

    Google Scholar 

  142. Wodnar-Filipowicz A, Heusser CH, Moroni C (1989) Production of the haemopoietic growth factors GM-CSF and interleukin-3 by mast cells in response to IgE receptor-mediated activation. Nature 339:150–152

    Google Scholar 

  143. Wong BJ, Dolovich J, Ramsdale EH, O'Byrne P, Gontovnick L, Denburg JA, Hargreave FE (1992) Formoterol compared with beclomethasone and placebo on allergen-induced asthmatic responses. Am Rev Respir Dis 146:1156–1160

    Google Scholar 

  144. Wong DTW, Weller PF, Galli SJ, Elovic A, Rand TH, Gallagher GT, Chiang T, Chou MY, Matossian K, McBride J, Todd R (1990) Human eosinophils express transforming growth factor α. J Exp Med 172:673–681

    Google Scholar 

  145. Wuethrich B, Schindler C, Zemp E, Zellweger J-P, SAPALDIA-Team (1993) Prevalence of pollinosis in the adult population of Switzerland (SAPALDIA-study). Allergy 48(Suppl):10

    Google Scholar 

  146. Yunginger JW, Gleich GJ (1973) Seasonal changes in serum and nasal IgE concentrations. J Allergy Clin Immunol 51:174–186

    Google Scholar 

  147. Zimmerman B, Lanner A, Enander I, Zimmerman RS, Peterson CGB, Ahlstedt S (1993) Total blood eosinophils, serum eosinophil cationic protein and eosinophil protein X in childhood asthma: Relation to disease status and therapy. Clin Exp Allergy 23:564–570

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Offprint requests to: J.-C. Virchow, Jr.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Virchow, JC., Kroegel, C., Walker, C. et al. Cellular and immunological markers of allergic and intrinsic bronchial asthma. Lung 172, 313–334 (1994). https://doi.org/10.1007/BF00172846

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00172846

Key words

Navigation