Skip to main content
Log in

Expression of Bacillus subtilis levanase gene in Lactobacilus plantarum and Lactobacillus casei

  • Applied Genetics and Regulation
  • Original Paper
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Two Lactobacillus-Escherichia coli shuttle vectors, harbouring the levanase gene from Bacillus subtilis under the control of its own promoter (pLPEW1) or behind the E.coli tac promoter (pESIEW2), were constructed. Lactobacillus plantarum showed the same growth characteristics on selective plates and in liquid media containing inulin, after transformation with either pLPEW1 or pESIEW2. L. plantarum transformed with pLPEW1 could be selected on inulin plates, indicating that levanase expression can be used as a food-grade selection system for Lactobacillus. Lactobacillus casei grew faster in inulin-containing medium than L. plantarum after transformation with pESIEW2, but did not grow when harbouring pLPEW1. Inulin-degrading activities of 90 mU/ml were found in culture medium of L. plantarum containing pLPEW1 or pESIEW2, and of 500 mU/ml in medium of L. casei (pESIEW2). Addition of 1 mMm isopropyl β-d-thiogalactoside to the culture medium had no effect on growth and levanase expression in L. plantarum (pESIEW2) and L. casei (pESIEW2) strains. Levanase produced by L. casei (pESIEW2) has a size of 75 kDa and 72 kDa, corresponding to that of unprocessed and mature B. subtilis levanase, respectively, suggesting that the protein produced is recognized and processed by a signal peptidase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bates EM, Gilbert HJ, Hazlewood GP, Huckle J, Laurie JI, Mann SP (1989) Expression of a Clostridium thermocellum endoglucanase gene in Lactobacillus plantarum. Appl Environ Microbiol 55:2095–2097

    Google Scholar 

  • Chassy BM, Flickinger JL (1987) Transformation of Lactobacillus casei by electroporation. FEMS Microbiol Lett 44:173–177

    Google Scholar 

  • Christiaens H, Leer RJ, Pouwels PH, Verstraete W (1992) Cloning and expression of a conjugated bile acid hydrolase gene from Lactobacillus plantarum by using a direct plate assay. Appl Environ Microbiol 58:3792–3798

    Google Scholar 

  • Cohen SN, Chang ACY, Hsu L (1972) Nonchromosomal antibiotic resistance in bacteria: genetic transformation of Escherichia coli by R-factor DNA. Proc Natl Acad Sci USA 69:2110–2114

    CAS  PubMed  Google Scholar 

  • Edelmann J, Jefford TG (1964) The metabolism of fructose polymers in plants 4-ßβ-fructofuranosidases of tubers of Helianthus tuberosus. Biochem J 93:148–161

    Google Scholar 

  • Efstathiou I, Reysset G, Truffaut N (1986) A study of inulinase activity in the Clostridium acetobutylicum strain ABKn8. Appl Microbiol Biotechnol 25:143–149

    Google Scholar 

  • Friehs K, Schörgendorfer K, Schwab H (1986) Cloning and phenotypic expression in Escherichia coli of a Bacillus subtilis gene fragment coding for sucrose hydrolysis. J Biotechnol 3:333–341

    Google Scholar 

  • Jones S, Warner PJ (1990) Cloning and expression of alpha-amylase from Bacillus amyloliquefaciens in a stable plasmid vector in Lactobacillus plantarum. Lett Appl Microbiol 11:214–219

    Google Scholar 

  • Kandler O, Weiss N (1986) Regular, nonsporing Gram-positive rods: Lactobacillus. In: Sneath PHA, Mair N, Sharpe ME, Holt G (eds) Bergey's Manual of Systematic Bacteriol, Williams & Wilkins Baltimore, 1209–1234

    Google Scholar 

  • Kunst F, Steinmetz M, Lepesant JA, Dedonde R (1977) Presence of a third sucrose hydrolizing enzyme in Bacillus subtilis: constitutive levanase synthesis by mutants of Bacillus subtilis Marburg 168. Biochimie 59:287–292

    Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    PubMed  Google Scholar 

  • Maniatis T, Fritsch EF, Sambrook J (1982) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York

    Google Scholar 

  • Martin I, Debarbouille M, Ferrari E, Klier A, Rapoport G (1987) Characterization of the levanase gene of Bacillus subtilis which shows homology to yeast invertase. Mol Gen Genet 208:177–184

    Google Scholar 

  • Martin I, Debarbouille M, Klier A, Rapoport G (1989) Induction and metabolite regulation of levanase synthesis in Bacillus subtilis. J Bacteriol 171:1885–1892

    Google Scholar 

  • Martin-Verstraete I, Debarbouille M, Klier A, Rapoport G (1990) Levanase operon of Bacillus subtilis includes a fructose-specific phosphotransferase system regulating the expression of the operon. J Mol Biol 214:657–671

    Google Scholar 

  • Oiwa H, Naganuma M, Ohinuma S (1987) Acetone-butanol production from dahlia inulin by Clostridium pasteurianum var. 1–53. Agric Biol Chem 51:2819–2820

    Google Scholar 

  • Posno M, Leer JR, van Luijk N, van Giezen MJF, Heuvelmans PTHM, Lokman BC, Pouwels PH (1991) Incompatibility of Lactobacillus vectors with replicons derived from small cryptic Lactobacillus plasmids and segregational instability of the introduced vectors. Appl Environ Microbiol 57:1822–1828

    Google Scholar 

  • Scheirlinck T, Mathillon J, Joos H, Dhaese P, Michiels F (1989) Integration and expresion of α-amylase and endoglucanase gene in the chromosome of Lactobacillus plantarium. Appl Environ Microbiol 55:2130–2137

    Google Scholar 

  • Scheirlinck T, De Meutter J, Arnaut G, Joos H, Claeyssens M, Michiels F (1990) Cloning and expression of cellulase and xylanase genes in Lactobacillus plantarium. Appl Microbiol Biotechnol 33:534–541

    Google Scholar 

  • Schörgendorfer K (1988) Molecular characterization of the levanase gene of Bacillus subtilis. PhD Thesis, Technical University of Graz, Australia

    Google Scholar 

  • Schörgendorfer K, Schwab H, Lafferty RM (1987) Nucleotide sequence of a cloned 2.5 kb Pstl-EcoRI Bacillus subtilis DNA fragment coding for levanase. Nucleic Acids Res 22:9606

    Google Scholar 

  • Schörgendorfer K, Schwab H, Lafferty RM (1988) Molecular characterization of Bacillus subtilis levanase and a C-terminal deleted derivative. J Biotechnol 7:247–258

    Google Scholar 

  • Seale DR (1986) Bacterial inoculants as silage additives. J Appl Bacteriol [Symp Suppl] 1986: 9S–26S

  • Seale DR (1987) Bacteria and enzymes as products to improve silage preservation, In Wilkinson J M, Stark BA (eds) Developments in silage. Chalcombe, Marlow, pp 47–61

    Google Scholar 

  • Sims IM, Smouter H, Pollock CJ, Simpson RJ (1991) The separation of complex mixtures of fructo-oligosaccharides from plants. Plant Physiol Biochem 29:257–267

    Google Scholar 

  • Thuring RWJ, Sanders JPM, Borst P (1975) A freeze-squeeze method for recovering large DNA from agarose gels. Anal Biochem 66:213–220

    Google Scholar 

  • Towbin H, Staehelin T, Gordon J (1979) Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci USA 76:4350–4354

    CAS  PubMed  Google Scholar 

  • Vieira J, Messing J (1982) The pUC plasmids, a M13 mp7-derived system for insertion mutagenesis and sequencing with synthetic universal primers. Gene 19:269–276

    Google Scholar 

  • Wanker E, Schörgendorfer K, Scwab H (1991) Expression of the Bacillus subtilis levanase gene in Escherichia coli and Saccharomyces cerevisiae. J Biotechnol 18:243–254

    Google Scholar 

  • Wanker E, Huber A, Schwab H (1994) Purification and characterization of the Bacillus subtilis levanase produced in Escherichia coli. Appl Environ Microbiol (in press)

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wanker, E., Leer, R.J., Pouwels, P.H. et al. Expression of Bacillus subtilis levanase gene in Lactobacilus plantarum and Lactobacillus casei . Appl Microbiol Biotechnol 43, 297–303 (1995). https://doi.org/10.1007/BF00172828

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00172828

Keywords

Navigation