Skip to main content
Log in

Atmospheric tides

  • Published:
Space Science Reviews Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

References

  • Meteorological and Geoastrophysical Abstracts 14 (1963), 3958–4019, ‘Lunar influences on atmospheric and geophysical phenomena’, by Wilhelm Nupon and Geza Thuronyi, gives 313 abstracts of date from 1825 to 1963 (but not complete for this period). It was prepared in conjunction with the IAGA/IAMAP Lunar Committee. Extensive bibliographies of such lunar tidal papers are given also by Chapman (1951) and Chapman and Westfold (1956).

  • Airy, G. B.; 1877, Greenwich Meteorological Reductions, 1854–1873, Barometer, London (See pp. 10, 14, 30).

  • Angot, A.: 1887, ‘Étude sur la marche diurne du baromètre’, Ann. Bur. meteorol. France.

  • Appleton, E. V. and Weekes, K.: 1939, ‘On Lunar tides in the upper atmosphere’, Proc. Roy. Soc. A171, 171–187.

    Google Scholar 

  • Appleton, E. V. and Weekes, K.: 1948, ‘On lunar tides in the upper atmosphere’, Proc. Roy. Soc. London, A171, 171–187.

    Google Scholar 

  • Bacon, Roger: 1859, Opera (ed. J. S. Brewer), Rolls Series, London.

  • Baker, W. G. and Martyn, D. F.: 1953, ‘Electric currents in the ionosphere’, Phil. Trans. Roy. Soc. London A246, 281–294.

    Google Scholar 

  • Bartels, J.: 1927, ‘Über die atmosphärischen Gezeiten’, Abh. Preuss. Meteorol. Inst. 8, Nr. 9.

  • Bartels, J.: 1928, ‘Gezeitenschwingungen der Atmosphäre’, Handbuch der Experimentalphysik 25 (Geophysik 1), pp 163–210.

    Google Scholar 

  • Bartels, J.: 1932a, ‘Tides in the atmosphere’, Sci. Monthly 35, 110–130.

    Google Scholar 

  • Bartels, J.: 1932b, ‘Statistical methods for research on diurnal variations’, Terr. Magnet. Atmos. Elec. 37, 291–302.

    Google Scholar 

  • Bartels, J.: 1938, ‘Berechnung der lunaren atmosphärischen Gezeiten aus Terminablesungen am Barometer’, Gerlands Beiträge Geophys. 54, 56–75.

    Google Scholar 

  • Bartels, J.: 1954, ‘A table of daily integers, seasonal, solar, lunar and geomagnetic’, Sci. Report No. 2 AF 19(604)-503, Geophys. Inst. Univ. Alaska.

  • Bartels, J.: 1957, ‘Gezeitenkräfte’, in Handbuch der Physik 48, 734–774, Springer, Berlin.

  • Bartels, J. and Fanselau, G.: 1937, ‘Geophysikalischer Mondalmanach’, Z. Geophys. 13, 311–328.

    Google Scholar 

  • Bartels, J. and Fanselau, G.: 1938a, ‘Geophysical lunar almanac’, Terr. Magnet. Atmos. Elec. 43, 155–158.

    Google Scholar 

  • Bartels, J. and Fanselau, G.: 1938b, ‘Geophysikalische Mondtafeln 1850–1875’, Geophys. Inst.Potsdam, Abh. Nr. 2, Springer, Berlin.

    Google Scholar 

  • Bartels, J. and Horn, W.: 1952, ‘Gezeitenkräfte’, in Landolt-Börnstein, Zahlenwerte und Funktionen aus Physik, usw., 6 Aufl., 3, 271–283, Springer, Berlin.

  • Bartels, J. and Johnston, H. F.: 1940, ‘Geomagnetic tides in horizontal intensity at Huancayo’, Terr. Magnet. Atmos. Elec. 45, 269–308; 485–512.

    Google Scholar 

  • Bartels, J. and Johnston, H. F.: 1940a, ‘Some features of the large geomagnetic tides in the horizontal force at Huancayo’, Trans. Amer. Geophys. Union, 1940, 273–287.

  • Bartels, J. and Kertz, W.: 1952, ‘Gezeitenartige Schwingungen der Atmosphäre’, in Landolt-Börnstein, Zahlenwerte und Funktionen aus Physik, usw., 6 Aufl. 3, 674–685, Springer, Berlin.

  • Bartels, J., Chapman, S., and Kertz, W.: 1952, ‘Gezeitenartige Schwingungen der Atmosphäre’, in Landolt-Börnstein, Zahlenwerte aus Physik, Chemi, Astronomie, Geophysik und Technik (ed. by J. Bartels and P. ten Bruggencate), vol. 3, Springer, Berlin, pp. 680–682. References giving details of these determinations can be found there.

  • Belousov, S. L.: 1962, Tables of normalized associated Legendre-Polynomials, Pergamon Press, London.

    Google Scholar 

  • Bergsma, P. A.: 1871, ‘Lunar Atmospheric Tide’, Obsns. Magn. Meteor. Obs. Batavia 1, 19–25 (contains meteorological observations for 1865 to 1868). Calculations of this type, for individual years, carried out in routine fashion, have been published for the 40 years 1866–1905. See also summary for these years in 28 (for 1905), 102ff., published 1907.

    Google Scholar 

  • Best, N., Havens, R., and LaGow, H.: 1947, ‘Pressure and temperature of the atmosphere up to 120 km’, Phys. Rev. 71, 915–916.

    Google Scholar 

  • Beyers, N. J. and Miers, B. T.: 1965, ‘Diurnal temperature change in the atmosphere between 30 and 60 km over White Sands Missile Range’, J. Atmos. Sci. 22, 262–266.

    Google Scholar 

  • Beyers, N. J., Miers, B. T., and Reed, R. J.: 1966, ‘Diurnal tidal motions near the stratopause during 48 hours at White Sands Missile Range’, J. Atmos. Sci. 23, 325–333.

    Google Scholar 

  • Bjerknes, J.: 1948, ‘Atmospheric tides’, J. Marine Res., 7, 154–162.

    Google Scholar 

  • Blamont, J. E. and Teitelbaum, H.: 1968, ‘La rotation du vector vitesse horizontal dans les marées atmosphériques’, Ann. Geophys. 24, 287–391.

    Google Scholar 

  • Booker, J. R. and Bretherton, F. P.: 1967, ‘The critical layer for internal gravity waves in a shear flow’, J. Fluid Mech. 27, 513–539.

    Google Scholar 

  • Börnstein, R.: 1891, ‘Eine Beziehung zwischen dem Luftdruck und dem Stundenwinkel des Mondes’, Meteorol. Z. 8, 161–170.

    Google Scholar 

  • Bouvard, A.: 1830, ‘Mémoire sur les observations météorologiques faites à l'Observatoire Royal de Paris’, Mém. Acad. Roy. Sci. Paris 7, 267–341 (read April 1827, published after Laplace's death in 1830).

    Google Scholar 

  • Brillouin, M.: 1932, ‘Les latitudes critiques’, Compt. Rend. Acad. Sci. Paris 194, 801–804.

    Google Scholar 

  • Brooks, C. E. P.: 1917, ‘The reduction of temperature observations to mean of 24 hours and the elucidation of the diurnal variation in the continent of Africa’, Quart. J. Roy. Meteorol. Soc. 45, 375–387.

    Google Scholar 

  • Broun, J. A.: 1874, Trevandrum Magnetical Observations 1.

  • Bruce, G. H., Peaceman, D. W., Rachford, H. H. Jr., and Rice, J. D.: 1953, Trans. Am. Inst. Min. Metall. Engnrs. 198, 79–92.

    Google Scholar 

  • Brunt, D.: 1939, Physical and Dynamical Meteorology, Cambridge University Press, Cambridge, England.

    Google Scholar 

  • Butler, S. T. and Small, K. A.: 1963, ‘The excitation of atmospheric oscillations’, Proc. Roy. Soc. A274, 91–121.

    Google Scholar 

  • Casson, L.: 1959, The Ancient Mariners, Gollancz, London.

    Google Scholar 

  • Chambers, C.: 1887, ‘On the luni-solar variations of magnetic declination and horizontal force at Bombay, and of declination at Trevandrum’, Phil. Trans. Roy. Soc. London A178, 1–43.

    Google Scholar 

  • Chapman, S.: 1913, ‘On the diurnal variations of the earth's magnetism produced by the moon and sun’, Phil. Trans. Roy. Soc. London A213, 279–321.

    Google Scholar 

  • Chapman, S.: 1918a, ‘The lunar atmospheric tide at Greenwich’, Quart. J. Roy. Meteor. Soc. 44, 271–280.

    Google Scholar 

  • Chapman, S.: 1918b, ‘An example of the determination of a minute periodic variation as illustrative of the law of errors’, Monthly Notices Roy. Astron. Soc. 78, 635–638.

    Google Scholar 

  • Chapman, S.: 1919a, ‘The solar and lunar diurnal variations of the earth's magnetism’, Phil. Trans. Roy. Soc., London A-218, 1–118.

    Google Scholar 

  • Chapman, S.: 1919b, ‘The lunar tide in the earth's atmosphere’, Quart. J. Roy. Meteorol. Soc. 45, 113–139.

    Google Scholar 

  • Chapman, S.: 1924a, ‘The semi-diurnal oscillation of the atmosphere’, Quart. J. Roy. Meteorol. Soc. 50, 165–195.

    Google Scholar 

  • Chapman, S.: 1924b, ‘Lunar atmospheric tide at Mauritius and Tiflis’, Quart. J. Roy. Meteorol. Soc. 50, 99–112 (abstract: Nature 113, 326).

    Google Scholar 

  • Chapman, S.: 1930, ‘On the determination of the lunar atmospheric tide’, Z. Geophys. 6, 396–420.

    Google Scholar 

  • Chapman, S.: 1932a, ‘The lunar diurnal variation of atmospheric temperature at Batavia, 1866–1928’, Proc. Roy. Soc., London A137, 1–24.

    Google Scholar 

  • Chapman, S.: 1932b, ‘On the theory of the lunar tidal variation of atmospheric temperature’, Mem. Roy. Meteorol. Soc. 4, 35–40.

    Google Scholar 

  • Chapman, S.: 1936, ‘The lunar atmospheric tide at Glasgow’, Proc. Roy. Soc. Edin. A56, 1–5.

    Google Scholar 

  • Chapman, S.: 1948, ‘Some meteorological advances since 1939’, Procès-Verbaux des Séances de l'Association de Météorologie, Oslo, 2–24, (Uccle, Belgium 1950).

    Google Scholar 

  • Chapman, S.: 1951, ‘Atmospheric tides and oscillations’, in Compendium of Meteorology, Boston, pp.262–274.

  • Chapman, S.: 1952, ‘The calculation of the probable error of determinations of the lunar daily harmonic component variations in geophysical data’, Australian J. Sci. Res. A5, 218–222.

    Google Scholar 

  • Chapman, S.: 1956, ‘The electrical conductivity of the ionosphere: a review’, Nuovo Cim. (Suppl. 4) 4, Serie X, 1385–1412.

    Google Scholar 

  • Chapman, S.: 1961, ‘Regular motions in the ionosphere: electric and magnetic relationships’, Bull. Amer. Meteorol. Soc. 42, 85–100.

    Google Scholar 

  • Chapman, S.: 1967, ‘The correction for non-cyclic variation in harmonic analysis’, J. Atmos. Terr. Phys. 29, 1625–1627.

    Google Scholar 

  • Chapman, S.: 1969, ‘The lunar and solar semidiurnal variations of barometric pressure at Copenhagen, 1884–1949 (66 years)’, Quart. J. Roy. Meteorol. Soc. 95, 381–394.

    Google Scholar 

  • Chapman, S. and Austin, M.: 1934, ‘The lunar atmospheric tide at Buenos Aires 1891–1910’, Quart. J. Roy. Meteorol. Soc. 60, 23–28.

    Google Scholar 

  • Chapman, S. and Bartels, J.: 1940, Geomagnetism, Vols. I and II, Clarendon Press, Oxford.

    Google Scholar 

  • Chapman, S. and Miller, J. C. P.: 1940, ‘The statistical determination of lunar daily variations in geomagnetic and meteorological elements’, Monthly Not. Geophys. Suppl. 4, 649–669.

    Google Scholar 

  • Chapman, S. and Hofmeyr, W. L.: 1963, ‘The solar and lunar daily variations of barometric pressure at Kimberley (28.7°S, 24.8°E; 1202 meters), 1932–1960’, Pretoria Wea. Bur. J.Notos'12, 3–18.

    Google Scholar 

  • Chapman, S. and Falshaw, E.: 1922, ‘The lunar atmospheric tide at Aberdeen, 1869–1919’, Quart. J. Roy. Meteorol. Soc. 48, 246–250.

    Google Scholar 

  • Chapman, S. and Tschu, K. K.: 1948, ‘The lunar atmospheric tide at twenty-seven stations widely distributed over the globe’, Proc. Roy. Soc. A195, 310–323.

    Google Scholar 

  • Chapman, S. and Westfold, K. C.: 1956, ‘A comparison of the annual mean solar and lunar atmospheric tides in barometric pressure as regards their world-wide distribution of amplitude and phase’, J. Atmos. Terr. Phys. 8, 1–23.

    Google Scholar 

  • Charney, J. G. and Drazin, P. G.: 1961, ‘Propagation of planetary-scale disturbances from the lower into the upper atmosphere’, J. Geophys. Res. 66, 83–110.

    Google Scholar 

  • Charney, J. G. and Eliassen, A.: 1949, ‘A numerical method for predicting the perturbations of middle latitude westerlies’, Tellus 2, 38–54.

    Google Scholar 

  • Chiu, W. C.: 1953, ‘On the oscillations of the atmosphere’, Arch. Meteorol. Geophys. Biokl. A5, 280–303.

    Google Scholar 

  • CIRA: 1965, Caspar International Reference Atmosphere, North-Holland, Amsterdam.

    Google Scholar 

  • Craig, R. A.: 1965, The Upper Atmosphere, Academic Press, New York.

    Google Scholar 

  • Darwin, G. H.: 1901, The Tides; new edition, 1962, Freeman, San Francisco.

    Google Scholar 

  • Diehl, W. S.: 1948, Standard Atmospheric Tables and Data, NACA.

  • Dikii, L. A.: 1965, ‘The terrestrial atmosphere as an oscillating system’, Izvestiya, Atmospheric and Oceanic Physics — English Edition, 1, 275–286.

    Google Scholar 

  • Dikii, L. A.: 1967, ‘Allowance for mean wind in calculating the frequencies of free atmospheric oscillations’, Izvestiya, Atmospheric and Oceanic Physics — English Edition, 4, 583–584.

    Google Scholar 

  • Doodson, A. T.: 1922, ‘The harmonic development of the tide-generating potential’, Proc. Roy. Soc. A100, 305–329.

    Google Scholar 

  • Duclay, F. and Will, R.: 1960, ‘Étude de la variation semi-diurne lunaire de la pression atmosphérique à Tamanrasset’, Comptes Rendus 251, 3028–3030.

    Google Scholar 

  • Duperier, A.: 1946, ‘A lunar effect on cosmic rays’, Nature 157, 296.

    Google Scholar 

  • Eckart, C.: 1960, Hydrodynamics of Oceans and Atmospheres, Pergamon Press, New York.

    Google Scholar 

  • Egedal, J.: 1956, ‘On the computation of lunar daily variations in geomagnetism: two simple methods’, Publ. Danske Meteorol. Inst. No. 22.

  • Eisenlohr, O.: 1843, ‘Untersuchungen über das Klima von Paris und über die vom Monde bewirkte atmosphärische Ebbe und Fluth’, Pogg. Ann. Phys. Chemie 60, 161–212.

    Google Scholar 

  • Elford, W. G.: 1959, ‘A study of winds between 80 and 100 km in medium latitudes’, Planetary Space Sci. 1, 94–101.

    Google Scholar 

  • Eliassen, A. and Kleinschmidt, E.: 1957, ‘Dynamic Meteorology’, in Handbuch der Physik (S. Flügge, ed). 48, 1–154, Springer, Berlin.

  • Eliassen, A. and Palm, E.: 1961, ‘On the transfer of energy in stationary mountain waves’, Geofysiske Publ. 22, 1–23.

    Google Scholar 

  • Elliot, C. M.: 1852, ‘On the lunar atmospheric tide at Singapore’, Phil. Trans. Roy. Soc. London 142, 125–129.

    Google Scholar 

  • Finger, F. G. and McInturff, R. M.: 1968, ‘The diurnal temperature range of the middle stratosphere’, J. Atmos. Sci. 25, 1116–1128.

    Google Scholar 

  • Flattery, T. W.: 1967, Hough Functions. Technical Report, No. 21, Dept. of Geophysical Sciences, University of Chicago.

  • Frost, R.: 1960, ‘Pressure variation over Malaya and the resonance theory’, Air Ministry, Scient. Pap. 4, 13 pp.

    Google Scholar 

  • Geisler, J. E.: 1966, ‘Atmospheric winds in the middle latitude F-region’, J. Atmos. Terr. Phys. 28, 703–721.

    Google Scholar 

  • Giwa, F. B. A.: 1967, ‘Thermal conduction and viscosity and the choice of the upper level boundary condition in the theory of atmospheric oscillations’, Quart. J. Roy. Meteorol. Soc. 93, 242–246.

    Google Scholar 

  • Goldstein, S.: 1938, Modern Developments in Fluid Dynamics (2 vols.), Oxford University Press, Oxford.

    Google Scholar 

  • Golitsyn, G. S.: 1965, ‘Damping of small oscillations in the atmosphere’, Izvestiya, Atmospheric and Oceanic Physics- English Edition, 1, 82–89.

    Google Scholar 

  • Golitsyn, G. S. and Dikii, L. A.: 1966, ‘Oscillations of planetary atmospheres as a function of the rotational speed of the planet’, Izvestiya, Atmospheric and Oceanic Physics- English Edition, 2 pp 137–142.

    Google Scholar 

  • Goody, R. M.: 1960, ‘The influence of radiative transfer on the propagation of a temperature wave in a stratified diffusing medium’, J. Fluid Mech. 9, 445–454.

    Google Scholar 

  • Goody, R. M.: 1964, Atmospheric Radiation, Oxford University Press, London.

    Google Scholar 

  • Green, J. S. A.: 1965, ‘Atmospheric tidal oscillations: an analysis of the mechanics’, Proc. Roy. Soc. A288, 564–574.

    Google Scholar 

  • Greenhow, J. S. and Neufeld, E. L.: 1961, ‘Winds in the upper atmosphere’, Quart. J. Roy. Meteorol. Soc. 87, 472–489.

    Google Scholar 

  • Hann, J. v.: 1889, ‘Untersuchungen über die tägliche Oscillation des Barometers’, Denkschr. Akad. Wiss. Wien, Abt. I, 55, 49–121.

    Google Scholar 

  • Hann, J. v.: 1892,‘Weitere Untersuchungen über die tägliche Oscillation des Barometers’, Denkschr. Akad. Wiss. Wien 59, 297–356.

    Google Scholar 

  • Hann, J. v.: 1906, ‘Der tägliche Gang der Temperatur in der inneren Tropenzone’, Denkschr. Akad. Wiss. Wien 78, 249–366.

    Google Scholar 

  • Hann, J. v.: 1915, in Lehrbuch der Meteorologic (Leipzig, C. H. Tauchnitz), 3, Aufl. 1915; 4. Aufl. (with R. Süring), 1926; 5. Aufl.1938, W. Keller, Leipzig.

  • Hann, J. v.: 1918a, ‘Untersuchungen über die tägliche Oscillation des Barometers. Die dritteltägige (achtstundige) Luftdruckschwankung’, Denkschr. Akad. Wiss. Wien 95, 1–64.

    Google Scholar 

  • Hann, J. v.: 1918b, ‘Die jährliche Periode der halbtägigen Luftdruckschwankung’, S.B. Akad. Wiss. Wien, Abt. IIa, 127, 263–365.

    Google Scholar 

  • Hann, J. v.: 1919, ‘Die ganztägige (24stundige) Luftdruckschwankung in ihrer Abhängigkeit von der Unterlage (Ozean Bodengestalt)’, Sitzb. Akad. Wiss. Wien, Abt. IIa, 128, 379–506. Reference [9] of Chapman, 1951, p. 110 gives corrections.

    Google Scholar 

  • Harris, I. and Priester, W.: 1965, ‘On the dynamical variation of the upper atmosphere’, J. Atmos. Sci. 22, 3–10.

    Google Scholar 

  • Harris, M. F.: 1959, ‘Diurnal and semidiurnal variations of wind, pressure and temperature in the troposphere at Washington, D.C.’, J. Geophys. Res. 64, 983–995.

    Google Scholar 

  • Harris, M. F., Finger, F. G., and Teweles, S.: 1962, ‘Diurnal variations of wind, pressure, and temperature in the troposphere and stratosphere over the Azores’, J. Atmos. Sci. 19, 136–149.

    Google Scholar 

  • Harris, M. F., Finger, F. G., and Teweles, S.: 1966, ‘Frictional and thermal influences in the solar semidiurnal tide’, Mon. Wea. Rev. 94, 427–447.

    Google Scholar 

  • Haurwitz, B.: 1940, ‘The motion of atmospheric disturbances on a spherical earth’, J. Mar. Res. 3, 254–267.

    Google Scholar 

  • Haurwitz, B.: 1951, ‘The perturbation equations in meteorology’, in Compendium of Meteorology (T. F. Malone, ed.), American Meteorological Soc., Boston, pp. 401–420.

    Google Scholar 

  • Haurwitz, B.: 1956, ‘The geographical distribution of the solar semidiurnal pressure oscillation’, Meteorol. Pap. 2 (5), New York University.

  • Haurwitz, B.: 1957, ‘Atmospheric oscillations and meridional temperature gradient’, Beitr. Phys. Atmos. 30, 46–54.

    Google Scholar 

  • Haurwitz, B.: 1962a, ‘Die tägliche Periode der Lufttemperatur in Bodennähe und ihre geographische Verteilung’, Arch. Met. Geoph. Biokl. A12, 426–434.

    Google Scholar 

  • Haurwitz, B.: 1962b, ‘Wind and pressure oscillations in the upper atmosphere’, Arch. Meteorol.Geophys. Biokl. 13, 144–165.

    Google Scholar 

  • Haurwitz, B.: 1964, ‘Tidal phenomena in the upper atmosphere’, W.M.O. Rept., No. 146, T.P. 69.

  • Haurwitz, B.: 1965, ‘The diurnal surface pressure oscillation’, Archiv. Meteorol. Geophys. Biokl. A14, 361–379.

    Google Scholar 

  • Haurwitz, B. and Cowley, Ann D.: 1965, ‘The lunar and solar air tides at six stations in North and Central America’, Mo. Wea. Rev. 93, 505–509.

    Google Scholar 

  • Haurwitz, B. and Cowley, Ann D.: 1966, ‘Lunar air tide in the Caribbean and its monthly variation’, Mo. Wea. Rev. 94, 303–306.

    Google Scholar 

  • Haurwitz, B. and Cowley, Ann D.: 1967, ‘New determinations of the lunar barometric tide’, Beitr. Phys. Atmos. 40, 243–261.

    Google Scholar 

  • Haurwitz, B. and Cowley, Ann D.: 1968, ‘Lunar and solar barometric tides in Australia’, Mo. Wea. Rev. 96, 601–605.

    Google Scholar 

  • Haurwitz, B. and Cowley, A. D.: 1968a, ‘Lunar tidal winds at four American stations’, Geophys. J. Roy. Astron. Soc. 15, 103–107.

    Google Scholar 

  • Haurwitz, B. and Cowley, A. D.: 1970, ‘The lunar barometric tide, its global distribution and annual variation’, Pure and Applied Geophys. 75, 1–29.

    Google Scholar 

  • Haurwitz, B. and Möller, F.: 1955, ‘The semidiurnal air-temperature variation and the solar air tide’, Archiv. Meteorol. Geophys. Biokl. A8, 332–350.

    Google Scholar 

  • Haurwitz, B. and Sepúlveda, G. M.: 1957, ‘The geographical distribution and seasonal variation of the semidiurnal pressure oscillation in high latitudes’, Archiv Meteorol. Geophys. Biokl., A10, 29–42.

    Google Scholar 

  • Hering, W. S. and Borden, T. R.: 1962, ‘Diurnal variations in the summer wind field over the central United States’, J. Atmos. Sci. 19, 81–86.

    Google Scholar 

  • Hines, C. O.: 1960, ‘Internal gravity waves at ionospheric heights’, Canad. J. Phys. 38, 1441–1481.

    Google Scholar 

  • Hines, C. O.: 1963, ‘The upper atmosphere in motion’, Quart. J. Roy. Meteorolog. Soc. 89, 1–42.

    Google Scholar 

  • Hines, C. O.: 1966, ‘Diurnal tide in the upper atmosphere’, J. Geophys. Res. 71, 1453–1459.

    Google Scholar 

  • Hodges, R. R. Jr.: 1967, ‘Generation of turbulence in the upper atmosphere by internal gravity waves’, J. Geophys. Res. 72, 3455–3458.

    Google Scholar 

  • Holmberg, E. R. R.: 1952, ‘A suggested explanation of the present value of the velocity of rotation of the earth’, Monthly Notices Roy. Astron. Soc. Geophys. Suppl. 6, 325–330.

    Google Scholar 

  • Hough, S. S.: 1897, ‘On the application of harmonic analysis to the dynamical theory of tides, Part I. On Laplace's ‘Oscillations of the first species’, and on the dynamics of ocean currents’, Phil. Trans. Roy. Soc. A189, 201–257.

    Google Scholar 

  • Hough, S. S.: 1898, ‘The application of harmonic analysis to the dynamical theory of the tides, Part II. On the general integration of Laplace's dynamical equations’, Phil. Trans. Roy. Soc. London A191, 139–185.

    Google Scholar 

  • Hunt, D. C. and Manabe, S.: 1968, ‘An investigation of thermal tidal oscillations in the earth's atmosphere using a general circulation model’, Mon. Wea. Rev. 96, 753–766.

    Google Scholar 

  • Hyde, W. W.: 1947, Ancient Greek Mariners, Oxford University Press, New York.

    Google Scholar 

  • Hylleraas, E. A.: 1939, ‘Über die Schwingungen eines stabil geschichteten, durch Meridiane begrenzten Meeres, I’, Astrophys. Norveg. 3, 139–164.

    Google Scholar 

  • Hyson, P.: 1968, ‘Thermistor mountings’, J. App. Meteorol. 7, 908–918.

    Google Scholar 

  • Jacchia, L. G.: 1963, ‘Variations of the earth's upper atmosphere as revealed by satellite drag’, Rev. Mod. Phys. 35, 973–991.

    Google Scholar 

  • Jacchia, L. G. and Kopal, Z.: 1951, ‘Atmospheric oscillations and the temperature profile of the upper atmosphere’, J. Meteorol. 9, 13–23.

    Google Scholar 

  • James, G. and James, R. C.: 1959, Mathematics Dictionary, Van Nostrand.

  • Johnson, D. H.: 1955, ‘Tidal oscillations of the lower stratosphere’, Quart. J. Roy. Meteorol. Soc. 81, 1–8.

    Google Scholar 

  • Johnson, F. S.: 1953, ‘High altitude diurnal temperature changes due to ozone absorption’, Bull. Am. Meteorol. Soc. 34, 106–110.

    Google Scholar 

  • Kato, S.: 1956, ‘Horizontal wind systems in the ionospheric E region deduced from the dynamo theory of geomagnetic Sq variation, Part II’, J. Geomagnet. Geoelec. Kyoto 8, 24–37.

    Google Scholar 

  • Kato, S.: 1966, ‘Diurnal atmospheric oscillation, 1, eigenvalues and Hough functions’, J. Geophys. Res. 71, 3201–3209.

    Google Scholar 

  • Thomson, W. (later Lord Kelvin): 1882, ‘On the thermodynamic acceleration of the earth's rotation’, Proc. Roy. Soc. Edinb. 11, 396–405.

    Google Scholar 

  • Kertz, W.: 1951, ‘Theorie der gezeitenartigen Schwingungen als Eigenwertproblem’, Ann. Meteorol. 4, Suppl. 1.

  • Kertz, W.: 1956a, ‘Die thermische Erregungsquelle der atmosphärischen Gezeiten’, Nachr. Akad. Wiss. Göttingen Math.-phys. Kl. No. 6, 145–166.

  • Kertz, W.: 1956b, ‘Components of the semidiurnal pressure oscillation’, New York University, Dept. of Meteor, and Ocean., Sci. Rep. 4.

  • Kertz, W.: 1956c, ‘The seasonal variations of the six-hourly planetary pressure and temperature waves’, New York Univ., Dept. of Meteor, and Ocean, Sci. Rep. 5.

  • Kertz, W.: 1957, ‘Atmosphärische Gezeiten’, in Handbuch der Physik (ed. by S. Flügge), 48, 928–981, Springer, Berlin.

    Google Scholar 

  • Kertz, W.: 1959, ‘Partialwellen in den halb- und vierteltägigen gezeitenartigen Schwingungen der Erdatmosphäre’, Arch. Meteorol. Geophys. Biokl. A11, 48–63.

    Google Scholar 

  • King, J. W. and Kohl, H.: 1965, ‘Upper atmospheric winds and ionospheric drifts caused by neutral air pressure gradients’, Nature 206, 699–701.

    Google Scholar 

  • King-Hele, D. G., and Walker, D. M. C.: 1961, ‘Upper-atmosphere density during the years 1957 to 1961, determined from satellite orbits’, Space Res. 2, 918–957.

    Google Scholar 

  • Kiser, W. L., Carpenter, T. H., and Brier, G. W.: 1963, ‘The atmospheric tides at Wake Island’, Mo. Wea. Rev. 91, 566–572.

    Google Scholar 

  • Kondratyev, K. Ya.: 1965, Radiative Heat Exchange in the Atmosphere, Pergamon Press, London.

    Google Scholar 

  • Kuo, H. L.: 1968, ‘The thermal interaction between the atmosphere and the earth and propagation of diurnal temperature waves’, J. Atmos. Sci. 25, 682–706.

    Google Scholar 

  • Lamb, H.: 1910, ‘On atmospheric oscillations’, Proc. Roy. Soc. A84, 551–572.

    Google Scholar 

  • Lamb, H.: 1932, Hydrodynamics, Cambridge University Press, Cambridge, England. 4th edition 1916; 5th edition, 1924; 6th edition, 1932.

    Google Scholar 

  • Lamont, J.: 1868, Ann. Astron. Observ. Munich, Suppl. vol. 6.

  • Landau, L. D. and Lifshitz, E. M.: 1959, Fluid Mechanics, Pergamon Press, London.

    Google Scholar 

  • Laplace, P. S. (later Marquis De La Place): 1799, Mécanique céleste, Paris (a) 2 (iv), 294–298.

  • Laplace, P. S. (later Marquis De La Place): 1825, Mécanique céleste, Paris, (b) 5 (xiii), 145–167; (c) 5 (xiii), 237–243; (d) 5 (Supp.), 20–35 (dated 1827, but published after Laplace's death in 1830); (e) 5 (xii), 95. The substance of (b) and (c) was taken from ‘De l'action de la lune sur l'atmosphère’, Ann. Chim. (Phys.), 24 (1823), 280–294, and was reviewed, and partly translated, in ‘Berechnung der von dem Monde bewirkten atmosphärischen Fluth’, Pogg. Ann. Phys. Chem. 13 (1828), 137–149. Laplace also contributed ‘Additions’ on this subject to the Connaissance des Tems (sic) for 1826 and 1830.

  • Lenhard, R. W.: 1963, ‘Variation of hourly winds at 35 to 65 km during one day at Eglin Air Force Base, Florida’, J. Geophys. Res. 68, 227–234.

    Article  MATH  Google Scholar 

  • Leovy, C.: 1964, ‘Radiative equilibrium of the mesosphere’, J. Atmos. Sci. 21, 238–248.

    Google Scholar 

  • Liller, W. and Whipple, F. L.: 1954, ‘High altitude winds by meteor-train photography’, Spec. Suppl. to J. Atmos. Terr. Phys. 1, 112–130.

    Google Scholar 

  • Lindzen, R. S.: 1966a, ‘On the theory of the diurnal tide’, Mon. Wea. Rev. 94, 295–301.

    Google Scholar 

  • Lindzen, R. S.: 1966b, ‘On the relation of wave behavior to source strength and distribution in a propagating medium’, J. Atmos. Sci. 23, 630–632.

    Google Scholar 

  • Lindzen, R. S.: 1967a, ‘Thermally driven diurnal tide in the atmosphere’, Quart. J. Roy. Meteorol. Soc. 93, 18–42.

    Google Scholar 

  • Lindzen, R. S.: 1967b, ‘Planetary waves on beta-planes’, Mon. Wea. Rev. 95, 441–451.

    Google Scholar 

  • Lindzen, R. S.: 1967c, ‘Lunar diurnal atmospheric tide’, Nature 215, 1260–1261.

    Google Scholar 

  • Lindzen, R. S.: 1967d, ‘Reconsideration of diurnal velocity oscillation in the thermosphere’, J. Geophys. Res. 72, 1591–1598.

    Google Scholar 

  • Lindzen, R. S.: 1967e, ‘Physical processes in the mesosphere’, Proceedings of the IAMAP Moscow meeting on Dynamics of Large Scale Atmospheric Processes (ed. by A. S. Monin).

  • Lindzen, R. S.: 1968a, ‘The application of classical atmospheric tidal theory’, Proc. Roy. Soc. A303, 299–316.

    Google Scholar 

  • Lindzen, R. S.: 1968b, ‘Vertically propagating waves in an atmosphere with Newtonian cooling inversely proportional to density’, Can. J. Phys. (in press).

  • Lindzen, R. S., Batten, E. S., and Kim, J.-W.: 1968, ‘Oscillations in atmospheres with tops’, Mon. Wea. Rev. 96, 133–140.

    Google Scholar 

  • Lindzen, R. S. and Goody, R.: 1965, ‘Radiative and photochemical processes in mesospheric dynamics. Part I: Models for radiative and photochemical processes’, J. Atmos. Sci. 22, 341–348.

    Google Scholar 

  • Lindzen, R. S. and McKenzie, D. J.: 1967, ‘Tidal theory with Newtonian cooling’, Pure App. Geophys. 66, 90–96.

    Google Scholar 

  • Longuet-Higgins, M. S.: 1967, ‘The eigenfunctions of Laplace's tidal equations over a sphere’, Phil. Trans. Roy. Soc. A269, 511–607.

    Google Scholar 

  • Love, A. E. H.: 1913, ‘Notes on the dynamical theory of the tides’, Proc. London Math. Soc. 12, 309–314.

    Google Scholar 

  • Maeda, H.: 1955, ‘Horizontal wind systems in the ionospheric E-region deduced from the dynamo theory of the geomagnetic S qvariation, Part I’, J. Geomagnet. Geoelec. Kyoto 7, 121–132.

    Google Scholar 

  • Manabe, S., and Möller, F.: 1961, ‘On the radiative equilibrium and heat balance of the atmosphere’, Mon. Wea. Rev. 89, 503–532.

    Google Scholar 

  • Manring, E., Bedinger, J., Knaflich, H., and Layzer, D.: 1964, ‘An experimentally determined model for the periodic character of winds from 85–135 km’, NASA Contractor Rept., NASA CR-36.

  • Margules, M.: 1890, ‘Über die Schwingungen periodisch erwarmter Luft’, Sitzber. Akad. Wiss. Wien, Abt. IIa, 99, 204–227.

    Google Scholar 

  • Margules, M.: 1892, ‘Luftbewegungen in einer rotierenden Sphäroidschale’, Sitzber. Akad. Wiss. Wien, Abt. IIa, 101, 597–626.

    Google Scholar 

  • Margules, M.: 1893, Sitzber. Akad. Wiss. Wien, Abt. IIa, 102, 11–56; 1369–1421.

    Google Scholar 

  • Martyn, D. F.: 1955, ‘Interpretation of observed F 2 winds as ionization drifts associated with the magnetic variations’, The Physics of the Ionosphere, Report of the Physical Society, London, 163–165.

  • Martyn, D. F. and Pulley, O. O.: 1947, ‘Atmospheric tides in the ionosphere: Part II, Lunar tidal variations in the F-region near the magnetic equator’, Proc. Roy. Soc. A190, 273–288.

    Google Scholar 

  • Matsushita, S. and Campbell, W. H.: 1967, Physics of Geomagnetic Phenomena, Vol. I, Academic Press, New York and London (2 vols.).

    Google Scholar 

  • Midgely, J. E. and Liemohn, H. B.: 1966, ‘Gravity waves in a realistic atmosphere’, J. Geophys. Res. 71, 3729–3748.

    Google Scholar 

  • Miers, B. T.: 1965, ‘Wind oscillations between 30 and 60 km over White Sands Missile Range, New Mexico’, J. Atmos. Sci. 22, 382–387.

    Google Scholar 

  • Minzner, R. A., Champion, K. S. W., and Pond, H. L.: 1959, The ARDC Modal Atmosphere, 1959. (Air Force Surveys in Geophysics, No. 115.)

  • Möller, F.: 1940, ‘Über den Tagesgang des Windes’, Meteor. Z. 57, 324–331.

    Google Scholar 

  • Morano, F.: 1899, ‘Marea atmosferica’, R. C. Accad., Lincei 8, 521–528.

    Google Scholar 

  • Mügge, R. and Möller, F.: 1932, ‘Zur Berechnung von Strahlungsströmen und Temperaturänderungen in Atmosphären von beliebigen Aufbau’, Z. Geophysik 8, 53–64.

    Google Scholar 

  • Nawrocki, P. J. and Papa, R.: 1963, Atmospheric Processes, Prentice-Hall, New Jersey.

    Google Scholar 

  • Neamtan, S. M.: 1946, ‘The motion of harmonic waves in the atmosphere’, J. Meteorol. 3, 53–56.

    Google Scholar 

  • Neumayer, G.: 1867, ‘On the lunar atmospheric tide at Melbourne’, Proc. Roy. Soc. 15, 489–501.

    Google Scholar 

  • Newton, I.: 1687, Philosophiae Naturalis Principia Mathematica, (a) Bk. 1, Prop. 66, Cor. 19, 20; Bk. 3, Prop. 24, 36, bd37, (b) Bk. d2, Prop. 48–50.

  • Newton, I.: 1727, De Mundi Systemate, London, Sections 38-47, 49-54.

  • Nunn, D.: 1967, A theoretical study of tides in the upper atmosphere, M.Sc. thesis, McGill University, Montreal.

    Google Scholar 

  • Palumbo, A.: 1960, ‘La marea atmosferica lunare a Catania’, Atti. Assoc. Geofis. Italia.

  • Palumbo, A.: 1962, ‘La marea atmosferica lunare a Napoli’, Atti. Assoc. Geofis. Italia.

  • Pekeris, C. L.: 1937, ‘Atmospheric oscillations’, Proc. Roy. Soc. A158, 650–671.

    Google Scholar 

  • Pekeris, C. L.: 1939, ‘The propagation of a pulse in the atmosphere’, Proc. Roy. Soc. A171, 434–449.

    Google Scholar 

  • Pekeris, C. L.: 1951, ‘Effect of the quadratic terms in the differential equations of atmospheric oscillations’, Natl. Adv. Comm. Aeronaut. Tech. Notes, 2314.

  • Pekeris, C. L. and Alterman, Z.: 1959, ‘A method of solving nonlinear equations of atmospheric tides with applications to an atmosphere of constant temperature’, in The Atmosphere and the Sea in Motion, Rockefeller Institute Press, New York.

    Google Scholar 

  • Phillips, N. A.: 1966, ‘The equations of motion for a shallow rotating atmosphere and the ‘traditional approximation’’, J. Atmos. Sci. 23, 626–628.

    Google Scholar 

  • Phillips, N. A.: 1968, ‘Reply to ‘comments on Phillips’ simplification of the equations of motion', by G. Veronis’, J. Atmos. Sci. 25, 1155–1157.

    Google Scholar 

  • Pitteway, M. L. V. and Hines, C. O.: 1963, ‘The viscous damping of atmospheric gravity waves’, Can. J. Phys. 41, 1935.

    Google Scholar 

  • Platzman, G. W.: 1967, ‘A retrospective view of Richardson's book on weather prediction’, Bull. Amer. Meteor. Soc. 48, 514–550; see p. 539.

    Google Scholar 

  • Pramanik, S. K.: 1926, ‘The six-hourly variations of atmospheric pressure and temperature’, Mem. Roy. Meteorol. Soc. London 1, 35–57.

    Google Scholar 

  • Pressman, J.: 1955, ‘Diurnal temperature variations in the middle atmosphere’, Bull. Amer. Meteorol. Soc. 36, 220–223.

    Google Scholar 

  • Price, A. T.: 1969, ‘Daily variations of the geomagnetic field’, Space Sci. Rev. 9, 151–197.

    Google Scholar 

  • Rayleigh, 3rd Baron (Strutt, J. W.): 1890, ‘On the vibrations of an atmosphere’, Phil. Mag. (5) 29, 173–180; Scientific Papers 3, 333–340, Dover Publications, New York, 1964.

    Google Scholar 

  • Reed, R. J.: 1967, ‘Semidiurnal tidal motions between 30 and 60 km’, J. Atmos. Sci. 24, 315–317.

    Google Scholar 

  • Reed, R. J., McKenzie, D. J., and Vyverberg, Joan C.: 1966a, ‘Further evidence of enhanced diurnal tidal motions near the stratopause’, J. Atmos. Sci. 23, 247–251.

    Google Scholar 

  • Reed, R. J., McKenzie, D. J., and Vyverberg, Joan C.: 1966b ‘Diurnal tidal motions between 30 and 60 km in summer’, J. Atmos. Sci. 23, 416–423.

    Google Scholar 

  • Reed, R. J., Oard, M. J., and Sieminski, Marya: 1969, ‘A comparison of observed and theoretical diurnal tidal motions between 30 and 60 km’, Mon. Wea. Rev. 97, 456–459.

    Google Scholar 

  • Revah, I., Spizzichino, A., and Massebeuf, Mme.: 1967, ‘Marée semi-diurnelle et vents dominants zonaux mesurés à Garchy (France) de Novembre 1965 à Avril 1966’, Note Technique GRI/NTP/27 de Centre National d'Études des Télécommunications, Issy-les-Moulineaux, France.

    Google Scholar 

  • Richtmyer, R.: 1957, Difference methods for initial value problems, Interscience, New York.

    Google Scholar 

  • Robb, R. A.; see Chapman, S.: 1936, ‘The lunar atmospheric tide at Glasgow’, Proc. Roy. Soc. Edin. 56, 1–5.

    Google Scholar 

  • Robb, R. A. and Tannahill, T. R.: 1935, ‘The lunar atmospheric pressure inequalities at Glasgow’, Proc. Roy. Soc. Edin. 55, 91–96.

    Google Scholar 

  • Roberts, P. H.: 1967, An Introduction to Magnetohydrodynamics, American Elsevier, New York.

    Google Scholar 

  • Rodgers, C. D. and Walshaw, C. D.: 1966, ‘The computation of infrared cooling rate in planetary atmospheres’, Quart. J. Roy. Meteorol. Soc. 92, 67–92.

    Google Scholar 

  • Rooney, W. J.: 1938, ‘Lunar diurnal variation in earth currents at Huancayo and Tucson’, Terr. Magn. Atmos. Elec. 43, 107–118.

    Google Scholar 

  • Rosenberg, N. W. and Edwards, H. D.: 1964, ‘Observations of ionospheric wind patterns through the night’, J. Geophys. Res. 69, 2819–2826.

    Google Scholar 

  • Rosenthal, S. L. and Baum, W. A.: 1956, ‘Diurnal Variation of Surface Pressure over the North Atlantic Ocean’, Mo. Weather Rev. 84, 379–387.

    Google Scholar 

  • Rougerie, P.: 1957, ‘La marée barométrique à Paris’, Ann. de Geophys. 13, 203–210.

    Google Scholar 

  • Sabine, E.: 1847, ‘On the lunar atmospheric tide at St. Helena’, Phil. Trans. Roy. Soc. London 137, 45–50.

    Google Scholar 

  • Sawada, R.: 1954, ‘The atmospheric lunar tides’, New York Univ. Meteorol. Pap. 2 (3).

  • Sawada, R.: 1956, ‘The atmospheric lunar tides and the temperature profile in the upper atmosphere’, Geophys. Mag. 27, 213–236.

    Google Scholar 

  • Sawada, R.: 1965, ‘The possible effect of oceans on the atmospheric lunar tide’, J. Atmos. Sci. 22, 636–643.

    Google Scholar 

  • Sawada, R.: 1966, ‘The effect of zonal winds on the atmospheric lunar tide’, Arch. Meteorol. Geophys. Biokl. A15, 129–167.

    Google Scholar 

  • Schmidt, A.: 1890, ‘Über die doppelte tägliche Oscillation des Barometers’, Meteor. Z. 7, 182–185.

    Google Scholar 

  • Schmidt, A.: 1919, ‘Zur dritteltägigen Luftdruckschwankung’ (from a letter to von Kann), Meteor. Z. 36, 29.

    Google Scholar 

  • Schmidt, A.: 1921, ‘Die Veranschaulichung der Resonanztheorie’ (in a review of Hann's 1919 paper) Meteor. Z. 38, 303–304.

    Google Scholar 

  • Schmidt, A.: 1935, Tafeln der normierten Kugelfunktionen, sowie Formeln zur Entwicklung, Engelhard-Reyer, Gotha.

    Google Scholar 

  • Schou, G.: 1939, ‘Mittel und Extreme des Luftdruckes in Norwegen’, Geofys. Publ. 14, No. 2.

  • Schuster, A.: 1889, ‘The diurnal variation of terrestrial magnetism’, Phil. Trans. Roy. Soc., London A180, 467–518.

    Google Scholar 

  • Sellick, N. P.: 1948, ‘Note on the diurnal and semidiurnal pressure variation in Rhodesia’, Quar. J. Roy. Met. Soc. 74, 78–81.

    Google Scholar 

  • Sen, H. K. and White, M. L.: 1955, ‘Thermal and gravitational excitation of atmospheric oscillations’, J. Geophys. Res. 60, 483–495.

    Google Scholar 

  • Shaw, W. N.: 1936, Manual of Meteorology, Vol. 2, Comparative Meteorology, Cambridge University Press.

  • Siebert, M.: 1954, ‘Zur theorie der thermischen Erregung gezeitenartiger Schwingungen der Erdatmosphäre’, Naturwissenschaften 41, 446.

    Google Scholar 

  • Siebert, M.: 1956a, ‘Analyse des Jahresganges der 1/n-tägigen Variationen des Luftdruckes und der Temperatur’, Nachr. Akad. Wiss. Göttingen Math-phys. Kl., No. 6, 127–144.

  • Siebert, M.: 1956b, ‘Über die gezeitenartigen Schwingungen der Erdatmosphäre’, Ber. Deut. Wetterd. 4, 65–71; 87–88.

    Google Scholar 

  • Siebert, M.: 1957, ‘Tidal oscillations in an atmosphere with meridional temperature gradient’, Sci. Rept. No. 3, Project 429, N.Y. University, Dept. of Meteorol. Oceanogr.

  • Siebert, M.: 1961, ‘Atmospheric tides’, in Advances in Geophysics, Vol. 7, Academic Press, New York, pp. 105–182.

    Google Scholar 

  • Simpson, G. C.: 1918, ‘The twelve-hourly barometer oscillation’, Quart. J. Roy. Meteorol. Soc. 44, 1–18.

    Google Scholar 

  • Solberg, H.: 1936, ‘Über die freien Schwingungen einer homogen Flüssigkeitenschicht auf der rotierenden Erde I.’, Astrophys. Norweg. 1, 237–340.

    Google Scholar 

  • Spar, J.: 1952, ‘Characteristics of the semidiurnal pressure waves in the United States’, Bull. Amer. Meteorol. Soc. 33, 438–441.

    Google Scholar 

  • Stolov, H. L.: 1954, ‘Tidal wind fields in the atmosphere’, J. Meteor. 12, 117–140.

    Google Scholar 

  • Sugiura, M. and Fanselau, G.: 1966, ‘Lunar phase numbers v and v′ for years 1850–2050’, NASA Rept., X-612–66–401, Goddard Space Flight Center, Greenbelt, Maryland, USA.

    Google Scholar 

  • Taylor, G. I.: 1917, ‘Phenomena connected with turbulence in the lower atmosphere’, Proc. Roy. Soc. A94, 137–155.

    Google Scholar 

  • Taylor, G. I.: 1929, 1930, ‘Waves and tides in the atmosphere’, Proc. Roy. Soc. A126, 169–183, 728.

    Google Scholar 

  • Taylor, G. I.: 1932, ‘The resonance theory of semidiurnal atmospheric oscillations’, Mem. Roy. Meteorol. Soc. 4, 41–52.

    Google Scholar 

  • Taylor, G. I.: 1936, ‘The oscillations of the atmosphere’, Proc. Roy. Soc. A156, 318–326.

    Google Scholar 

  • Thomson, W. (later Lord Kelvin): 1882, ‘On the thermodynamic acceleration of the earth's rotation’, Proc. Roy. Soc. Edinb. 11, 396–405.

    Google Scholar 

  • Tschu, K. K.: 1949, ‘On the practical determination of lunar and lunisolar daily variations in certain geophysical data’, Australian J. Sci. Res. A2, 1–24.

    Google Scholar 

  • Van der Stok, J. P.: 1885, ‘On the lunar atmospheric tide’, Obsns. Magn. Meteor. Obs. Batavia 6, (3)-(8), Appendix 2.

    Google Scholar 

  • Wallace, J. M. and F. R. Hartranft: 1969, ‘Diurnal wind variations; surface to 30 km’, Mon. Wea. Rev. 96, 446–455.

    Google Scholar 

  • Weekes, K. and Wilkes, M. V.: 1947, ‘Atmospheric oscillations and the resonance theory’, Proc. Roy. Soc. A192, 80–99.

    Google Scholar 

  • Wegener, A.: 1915, ‘Zur Frage der atmosphärischen Mondgezeiten’, Meteor. Z. 32, 253–258.

    Google Scholar 

  • Whipple, F. J. W.: 1918, ‘A note on the propagation of the semi-diurnal pressure wave’, Quart. J. Roy. Meteorol. Soc. 44, 20–23.

    Google Scholar 

  • Whipple, F. J. W.: 1930, ‘The great Siberian meteor and the waves, seismic and aerial, which it produced’, Quart. J. Roy. Meteor. Soc. 56, 287–303.

    Google Scholar 

  • Whittaker, E. T. and Watson, G. N.: 1927, A Course of Modern Analysis (4th edition), Cambridge University Press, London.

    Google Scholar 

  • Wilkes, M. V.: 1949, Oscillations of the Earth's Atmosphere, Cambridge University Press.

  • Wilkes, M. V.: 1951, ‘The thermal excitation of atmospheric oscillations’, Proc. Roy. Soc. A207, 358–344.

    Google Scholar 

  • Wilkes, M. V.: 1952, ‘Worldwide oscillations of the earth's atmosphere’, Quart. J. Roy. Meteor. Soc. 78, 321–336.

    Google Scholar 

  • Wilkes, M. V.: 1962, ‘Oscillations of the earth's atmosphere with allowance for variation of temperature with latitude’, Proc. Roy. Soc. A271, 44–56.

    Google Scholar 

  • Wright, T. (ed.): 1863, A. Neckam: De naturis rerum libri duo, liber 2, cap. 98, Rolls Series, London.

  • Wulf, O. R. and Nicholson, S. B.: 1947, ‘Terrestrial influences in the lunar and solar tidal motions of the air’, Terr. Magn. Atmos. Elect. 52, 175–182.

    Google Scholar 

  • Wurtele, M.: 1953, The initial-value lee-wave problem for the isothermal atmosphere, U.C.L.A. Sci. Rept., Dept. of Meteorology, No. 3.

  • Yanowitch, M.: 1966, ‘A remark on the hydrostatic approximation’, Pure Appl. Geophys. 64, 169–172.

    Google Scholar 

  • Yanowitch, M.: 1967, ‘Effect of viscosity on gravity waves and the upper boundary condition’, J. Fluid Mech. 29, 209–231.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

The National Center for Atmospheric Research is sponsored by the National Science Foundation.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lindzen, R.S., Chapman, S. Atmospheric tides. Space Sci Rev 10, 3–188 (1969). https://doi.org/10.1007/BF00171584

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00171584

Navigation