Skip to main content
Log in

Expression of a chitinase gene from Serratia marcescens in Lactococcus lactis and Lactobacillus plantarum

  • Applied Genetics and Regulation
  • Original paper
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

A chitinase gene from the Gram-negative bacterium Serratia marcescens BJL200 was cloned in Lactococcus lactis subsp. lactis MG1363 and in the silage inoculum strain Lactobacillus plantarum E19b. The chitinase gene was expressed as an active enzyme at a low level in Lactococcus lactis, when cloned in the same transcriptional orientation as the gene specifying the replication protein of the vector pIL253. Using the expression vectors pMG36e and pGKV259 with lactococcal promoter fragments p32 and p59, the expression in L. lactis was increased nine- and 27-fold, respectively. An additional twofold increase was obtained after cloning the gene under the control of p59 in the high-copy number replicon pIL253. In Lactobacillus plantarum, chitinase activity was expressed from p32, and the activity was at the same level as under p32 control in L. lactis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aukrust T, Blom H (1992) Transformation of Lactobacillus strains used in meat and vegetable fermentations. Food Res Int 25:253–261

    Google Scholar 

  • Baik B-H, Pack MY (1990) Expression of Bacillus subtilis endoglucanase gene in Lactobacillus acidophilus. Biotechnol Lett 12:919–924

    Google Scholar 

  • Bates EEM, Gilbert HJ, Hazlewood GP, Huckle J, Laurie JI, Mann SP (1989) Expression of a Clostridium thermocellum endoglucanase gene in Lactobacillus plantarum. Appl Environ Microbiol 55:2095–2097

    Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Carafa YA, Brody E, Thermes C (1990) Prediction of rho-independent Escherichia coli transcription terminators. J Mol Biol 216:835–858

    Google Scholar 

  • Dower WJ, Miller JF, Ragsdale CW (1988) High efficiency transformation of E. coli by high voltage electroporation. Nucleic Acids Res 16:6127–6145

    CAS  PubMed  Google Scholar 

  • Gasson MJ (1983) Plasmid complements of Streptococcus cremoris NCDO712 and other lactic acid streptococci after protoplast-induced curing. J Bacteriol 154:1–9

    Google Scholar 

  • Gooday GW (1990) Physiology of microbial degradation of chitin and chitosan. Biodegradation 1:177–190

    Google Scholar 

  • Guchte M van de, Vossen JMBM van der, Kok J, Venema G (1989) Construction of a lactococcal expression vector: expression of hen egg white lysozyme in Lactococcus lactis subsp. lactis. Appl Environ Microbiol 55:224–228

    Google Scholar 

  • Guchte M van de, Kok J, Venema G (1991) Distance-dependent translational coupling and interference in Lactococcus lactis. Mol Gen Genet 227:65–71

    Google Scholar 

  • Guchte M van de, Kok J, Venema G (1992) Gene expression in Lactococcus lactis. FEMS Microbiol Rev 88:73–92

    Google Scholar 

  • Gundersen A, Nes IF (1991) Characterization of the flora of lactic acid bacteria in ensiled plant material. In: Pahlow G, Honig H (eds) Proceedings of a conference on forage conservation towards 2000. Landbauforschung Völkenrode, Braunschweig, Germany, pp 290–292

    Google Scholar 

  • Hanahan D (1983) Studies on transformation of Escherichia coli with plasmids. J Mol Biol 166:557–580

    CAS  PubMed  Google Scholar 

  • Holo H, Nes IF (1989) High efficiency transformation by electroporation of Lactococcus lactis subsp. cremoris grown with glycine in osmotically stabilized media. Appl Environ Microbiol 55:3119–3123

    Google Scholar 

  • Jones S, Warner PJ (1990) Cloning and expression of alpha amylase from Bacillus amyloliquefaciens in a stable plasmid vector in Lactobacillus plantarum. Lett Appl Microbiol 11:214–219

    Google Scholar 

  • Kok J, Vossen JMBM van der, Venema G (1984) Construction of plasmid cloning vectors for lactic streptococci which also replicate in Bacillus subtilis and Escherichia coli. Appl Environ Microbiol 48:726–731

    Google Scholar 

  • Kombrink E, Schröder M, Hahlbrock K (1988) Several “pathogenesis-related” proteins in potato are 1,3-β-glucanases and chitinases. Proc Natl Acad Sci USA 85:782–786

    Google Scholar 

  • Kuranda MJ, Robbins PW (1987) Cloning and heterologous expression of glycosidase genes from Saccharomyces cerevisiae. Proc Natl Acad Sci USA 84:2585–2589

    Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins duringthe assembly of the head of bacteriophage T4. Nature 227:680–685

    PubMed  Google Scholar 

  • Leenhouts KJ, Tolner B, Bron S, Kok J, Venema G, Seegers JFML (1991) Nucleotide sequence and characterization of the broad-host-range lactococcal plasmid pWVO1. Plasmid 26:55–66

    Google Scholar 

  • Lelie D van der, Venema G (1987) Bacillus subtilis generates a major specific deletion in pAMβ1. Appl Environ Microbiol 53:2458–2463

    Google Scholar 

  • Lelie D van der, Vossen JMBM van der, Venema G (1988) Effect of plasmid incompatibility of DNA transfer to Streptococcus cremoris. Appl Environ Microbiol 54:865–871

    Google Scholar 

  • Lindgren SE, Dobrogosz WJ (1990) Antagonistic activities of lactic acid bacteria in food and feed fermentations. FEMS Microbiol Rev 87:149–164

    Google Scholar 

  • McKay LL, Baldwin KA (1990) Applications for biotechnology: present and future improvements in lactic acid bacteria. FEMS Microbiol Rev 87:3–14

    Google Scholar 

  • Monreal J, Reese ET (1969) The chitinase of Serratia marcescens. Can J Microbiol 15:689–696

    Google Scholar 

  • Oldenburg E (1991) Mycotoxins in conserved forage. In: Pahlow G, Honig H (eds) Proceedings of a conference on forage conservation towards 2000. Landbauforschung Völkenrode, Braunschweig, Germany, pp 191–205

    Google Scholar 

  • Oppenheim AB, Chet I (1992) Cloned chitinases in fungal plant-pathogen control strategies. Trends Biotechnol 10:392–394

    Google Scholar 

  • Oppenheim DS, Yanofski C (1980) Translational coupling during expression of the trytophan operon of Escherichia coli. Genetics 95:785–795

    Google Scholar 

  • Pouwels PH, Leer RJ, Posno M (1992) Genetic modification of Lactobacillus: a new approach towards strain improvement. In: Novel G, Le Querler J-F (eds) Lactic acid bacteris — research and industrial applications in the agro-food industries. Centre de Publications de l'Université de Caen, Caen, France, pp 133–148

    Google Scholar 

  • Roby D, Broglie K, Cressman R, Biddle P, Chet I, Broglie R (1990) Activation of a bean chitinase promoter in transgenic tobacco plants by phytopathogenic fungi. Plant Cell 2:999–1007

    Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.

    Google Scholar 

  • Scheirlinck T, Mahillon J, Joos H, Dhaese P, Michiels F (1989) Integration and expression of α-amylase and endoglucanase genes in the Lactobacillus plantarum chromosome. Appl Environ Microbiol 55:2130–2137

    Google Scholar 

  • Scheirlinck T, Meutter J de, Arnaut G, Joos H, Claeyssens M, Michiels F (1990) Cloning and expression of cellulase and xylanase genes in Lactobacillus plantarum. Appl Microbiol Biotechnol 33:534–541

    Google Scholar 

  • Schlumbaum A, Mauch F, Vögeli U, Boller T (1986) Plant chitinases are potent inhibitors of fungal growth. Nature 324:365–367

    Google Scholar 

  • Simon D, Chopin A (1988) Construction of a vector plasmid family and its use for molecular cloning in Streptococcus lactis. Biochimie 70:559–566

    Google Scholar 

  • Sundheim L, Poplawsky AR, Ellingboe AH (1988) Molecular cloning of two chitinase genes from Serratia marcescens and their expression in Pseudomonas species. Physiol Mol Plant Pathol 33:483–491

    Google Scholar 

  • Swinfield T-J, Oultram JD, Thompson DE, Brehm JK, Minton NP (1990) Physical characterization of the replication region of the Streptococcus faecalis plasmid pAMβ1. Gene 87:79–90

    CAS  PubMed  Google Scholar 

  • Trudel J, Asselin A (1989) Detection of chitinase activity after polyacrylamide gel electrophoresis. Anal Biochem 178:362–366

    Google Scholar 

  • Vossen JMBM van der, Lelie D van der, Venema G (1987) Isolation and characterization of Streptococcus cremoris Wg2-specific promoters. Appl Environ Microbiol 53:2452–2457

    Google Scholar 

  • Wright A von, Tynkkynen S, Suominen M (1987) Cloning of a Streptococcus lactis subsp. lactis chromosomal fragment associated with the ability to grow in milk. Appl Environ Microbiol 53:1584–1588

    Google Scholar 

  • Woolford MK (1990) The detrimental effects of air on silage. J Appl Bacteriol 68:101–116

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brurberg, M.B., Haandrikman, A.J., Leenhouts, K.J. et al. Expression of a chitinase gene from Serratia marcescens in Lactococcus lactis and Lactobacillus plantarum . Appl Microbiol Biotechnol 42, 108–115 (1994). https://doi.org/10.1007/BF00170232

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00170232

Keywords

Navigation