Skip to main content
Log in

The correlation of neoplastic vulnerability with central neuroepithelial cytogeny and glioma differentiation

  • Published:
Journal of Neuro-Oncology Aims and scope Submit manuscript

Abstract

The vulnerability of neuroepithelial cells in the central nervous system (CNS) to neoplastic transformation results from the interaction of several factors: the existence of a reserve population of stem cells, the capability of differentiated cells to reenter the kinetic cycle, the number of replicating cells at risk at a particular time, the length of time during which a particular cell population remains in the cycle, the state of differentiation and the further differentiation potential of that population, and the steps of differentiation that are achieved in successive cell generations. This concept explains many aspects of CNS tumor incidence and the relationship of central neuroepithelial embryonal tumors to tumors of adult cell type. The incidence of different types of central neuroepithelial tumors can be correlated with the width of the window of neoplastic vulnerability. Examples illustrating the existence of only a narrow window include such rare tumors as medulloepitheliomas, cerebral neuroblastomas, gangliogliomas and ependymoblastomas. By contrast, cerebellar medulloblastomas, astrocytomas, mixed astrocytomas and oligodendrogliomas, and glioblastomas exemplify instances in which a relatively wider window of vulnerability exists in the light of cellular neuro-ontogeny and of the capacity of glial cells for postnatal replication. The relationship that may occasionally be established between the development of a glioma and the production of cellular gliosis such as may follow brain injury or accompany multiple sclerosis can also be viewed in the light of that concept. Increasing awareness is needed concerning the development of postradiation gliomas, in particular after the apparently successful treatment of acute lymphocytic leukemia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Willis RA: The Borderland of Embryology and Pathology. London, Butterworths, 1958, pp 410–411

    Google Scholar 

  2. Kaplan MS: Proliferation of subependymal cells in the adult primate CNS: differential uptake of DNA labelled precursors. J Hirnforsch 23:23–33, 1982

    Google Scholar 

  3. Rakic P: Limits of neurogenesis in primates. Science 227:1054–1056, 1985

    Google Scholar 

  4. Barnard RO, Pambakian H: Astrocytic differentiation in medulloblastoma. J Neurol Neurosurg Psychiatry 43:1041–1044, 1980

    Google Scholar 

  5. Feigin I, Epstein F, Mangiardi J: Extensive advanced maturation of medulloblastoma to astrocytoma and ependymoma. J. Neuro-oncol 1:95–108, 1983

    Google Scholar 

  6. Rubinstein LJ, Herman MM, Hanbery JW: The relationship between differentiating medulloblastoma and dedifferentiating diffuse cerebellar astrocytoma. Light, electron microscopic, tissue, and organ culture observations. Cancer 33:675–690, 1974

    Google Scholar 

  7. Müller W, Schaefer HE: Beitrag zur morphologischen Onkotypie des Medulloblastoms. Acta Neuropathol 30:51–61, 1974

    Google Scholar 

  8. Schmitt HP: Rapid anaplastic transformation of gliomas in childhood. Neuropediatrics 14:137–143, 1983

    Google Scholar 

  9. Foulds L: Neoplastic Development, vol. 1. London and New York, Academic Press, 1969, pp 328–329

    Google Scholar 

  10. Paetau A, Mellström K, Westermark B, Dahl D, Haltia M, Vaheri A: Mutually exclusive expression of fibronectin and glial fibrillary acidic protein in cultured brain cells. Exp Cell Res 129:337–344, 1980

    Google Scholar 

  11. Jones TR, Ruoslahti E, Schold SC, Bigner DD: Fibronectin and glial fibrillary acidic protein expression in normal human brain and anaplastic human gliomas. Cancer Res 42:168–177, 1982

    Google Scholar 

  12. McKeever PE, Chronwall BM: Early switch in glial protein and fibronectin markers on cells during the culture of human gliomas. Ann NY Acad Sci 435:457–459, 1984

    Google Scholar 

  13. Rubinstein LJ, Herman MM: A light- and electronmicroscopic study of a temporal-lobe ganglioglioma. J Neurol Sci 16:27–48, 1972

    Google Scholar 

  14. Tang TT, Harb JM, Mörk SJ, Sty JR: Composite cerebral neuroblastoma and astrocytoma. A mixed central neuroepithelial tumor. Cancer 56:1404–1412, 1985

    Google Scholar 

  15. Herpers MJHM, Budka H: Glial fibrillary acidic protein (GFAP) in oligodendroglial tumors: gliofibrillary oligodendroglioma and transitional oligoastrocytoma as subtypes of oligodendroglioma. Acta Neuropathol 64:265–272, 1984

    Google Scholar 

  16. Russell DS, Rubinstein LJ: Pathology of Tumours of the Nervous System, ed 4. London, Edward Arnold, 1977

    Google Scholar 

  17. Sarmiento J, Ferrer I, Pons L, Ferrer E: Cerebral mixed tumour: osteochondrosarcoma-glioblastoma multiforme. Acta Neurochir 50:335–341, 1979

    Google Scholar 

  18. Richman AV, Balis GA, Maniscalco JE: Primary intracerebral tumor with mixed chondrosarcoma and glioblastoma — gliosarcoma or sarcoglioma? J Neuropathol Exp Neurol 39:329–335, 1980

    Google Scholar 

  19. Liesi P, Kaakkola S, Dahl D, Vaheri A: Laminin is induced in astrocytes of adult brain by injury. EMBO Journal 3:683–686, 1984

    Google Scholar 

  20. Liesi P, Dahl D, Vaheri A: Laminin is produced by early rat astrocytes in primary culture. J Cell Biol 96:920–924, 1983

    Google Scholar 

  21. Alitalo K, Bornstein P, Vaheri A, Sage H: Biosynthesis of an unusual collagen type by. human astrocytoma cells in vitro. J Biol Chem 258:2653–2661, 1983

    Google Scholar 

  22. Rubinstein LJ, Brucher J-M: Focal ependymal differentiation in choroid plexus papilloma: an immunoperoxidase study. Acta Neuropathol 53:29–33, 1981

    Google Scholar 

  23. Taratuto AL, Molina H, Monges J: Choroid plexus tumors in infancy and childhood: focal ependymal differentiation. An immunoperoxidase study. Acta Neuropathol 59:304–308, 1983

    Google Scholar 

  24. Kepes JJ, Rubinstein LJ, Chiang H: The role of astrocytes in the formation of cartilage in gliomas. An immunohistochemical study of four cases. Am J Pathol 117:471–483, 1984

    Google Scholar 

  25. Nakazato Y, Ishizeki J, Takahashi K, Yamaguchi H, Kamei T, Mori T: Localization of S-100 protein and glial fibrillary acidic protein-related antigen in pleomorphic adenoma of the salivary glands. Lab Invest 46:621–626, 1982

    Google Scholar 

  26. Nakazato Y, Ishida Y, Takahashi K, Suzuki K: Immunohistochemical distribution of S-100 protein and glial fibrillary acidic protein in normal and neoplastic salivary glands. Virchows Arch [Pathol Anat] 405:299–310, 1985

    Google Scholar 

  27. Marangos PJ, Schmechel D: The neurobiology of the brain enolases. In: Youdim MBH, Lovenberg DF, Sharman DF et al (eds) Essays in Neurochemistry and Neuropharmacology, vol. 4. New York, John Wiley & Sons, 1980, pp 211–247

    Google Scholar 

  28. Schmechel D, Marangos PJ, Brightman M: Neurone-specific enolase is a molecular marker for peripheral and central neuroendocrine cells. Nature 276:834–836, 1978

    Google Scholar 

  29. Odelstad L, Påhlman S, Nilsson K, Larsson E, Läckgren G, Johansson K-E, Hjerten S, Grotte G: Neuron-specific enolase in relation to differentiation in human neuroblastoma. Brain Res 224:69–82, 1981

    Google Scholar 

  30. Tapia FJ, Polak JM, Barbosa AJA, Bloom SR, Marangos PJ, Dermody C, Pearse AGE: Neuron-specific enolase is produced by neuroendocrine tumours. Lancet I:808–811, 1981

    Google Scholar 

  31. Dhillon AP, Rode J, Leathem A: Neurone specific enolase: an aid to the diagnosis of melanoma and neuroblastoma. Histopathology 6:81–92, 1982

    Google Scholar 

  32. Wick MR, Scheithauer BW, Kovacs K: Neuron-specific enolase in neuroendocrine tumors of the thymus, bronchus, and skin. Am J Clin Pathol 79:703–707, 1983

    Google Scholar 

  33. Vinores SA, Bonnin JM, Rubinstein LJ, Marangos PJ: Immunohistochemical demonstration of neuron-specific enolase in neoplasms of the central nervous system and other tissues. Arch Pathol Lab Med 108:536–540, 1984

    Google Scholar 

  34. Vinores SA, Marangos PJ, Bonnin JM, Rubinstein LJ: Immunoradiometric and immunohistochemical demonstration of neuron-specific enolase in experimental rat gliomas. Cancer Res 44:2595–2599, 1984

    Google Scholar 

  35. Vinores SA, Herman MM, Rubinstein LJ, Marangos PJ: Electron microscopic localization of neuron-specific enolase in rat and mouse brain. J Histochem Cytochem 32:1295–1302, 1984

    Google Scholar 

  36. Vinores SA, Herman MM, Rubinstein LJ: Electronimmunocytochemical localization of neuron-specific enolase in cytoplasm and on membranes of primary and metastatic cerebral tumors and on glial filaments of glioma cells. Histopathology 10:891–908, 1986

    Google Scholar 

  37. Smith TW, Davidson RI: Medullomyoblastoma. A histologic, immunohistochemical, and ultrastructural study. Cancer 54:323–332, 1984

    Google Scholar 

  38. Auer RN, Becker LE: Cerebral medulloepithelioma with bone, cartilage, and striated muscle. Light microscopic and immunohistochemical study. J Neuropathol Exp Neural 42:256–267, 1983

    Google Scholar 

  39. Karch SB, Urich H: Medulloepithelioma: definition of an entity. J Neuropath Exp Neurol 31:27–53, 1972

    Google Scholar 

  40. Brandt BL, Kimes BW, Klier FG: Development of a clonal myogenic cell line with unusual biochemical properties. J Cell Physiol 88:255–275, 1976

    Google Scholar 

  41. Lennon VA, Peterson S, Schubert D: Neurectoderm markers retained in phenotypical skeletal muscle cells arising from a glial cell line. Nature 281:586–588, 1979

    Google Scholar 

  42. Wright WE: Induction of muscle genes in neural cells. J Cell Biol 98:427–435, 1984

    Google Scholar 

  43. Herrick MK, Rubinstein LJ: The cytological differentiating potential of pineal parenchymal neoplasms (true pinealomas). A clinicopathological study of 28 tumours. Brain 102:289–320, 1979

    Google Scholar 

  44. Stefanko SZ, Manschot WA: Pinealoblastoma with retinoblastomatous differentiation. Brain 102:321–332, 1979

    Google Scholar 

  45. Sobel RA, Trice JE, Nielsen SL, Ellis WG: Pineoblastoma with ganglionic and glial differentiation. Report of two cases. Acta Neuropathol 55:243–246, 1981

    Google Scholar 

  46. Clabough JW: Cytological aspects of pineal development in rats and hamsters. Am J Anat 137:215–230, 1973

    Google Scholar 

  47. Zimmerman BL, Tso MOM: Morphologic evidence of photoreceptor differentiation of pinealocytes in the neonatal rat. J Cell Biol 66:60–75, 1975

    Google Scholar 

  48. Altar A: Development of the mammalian pineal gland. Dev Neurosci 5:166–180, 1982

    Google Scholar 

  49. Bader JL, Meadows AT, Zimmerman LE, Rorke LB, Voute PA, Champion LAA, Miller RW: Bilateral retinoblastoma with ectopic intracranial retinoblastoma: trilateral retinoblastoma. Cancer Genet Cytogenet 5:203–213, 1982

    Google Scholar 

  50. Brownstein S, de Chadarévian J-P, Little JM: Trilateral retinoblastoma. Report of two cases. Arch Ophthalmol 102:257–262, 1984

    Google Scholar 

  51. Michaud J, Jacob J-L, Demers J, Dumas J: Trilateral retinoblastoma: bilateral retinoblastoma with pinealoblastoma. Can J Ophthalmol 19:36–39, 1984

    Google Scholar 

  52. Johnson DL, Chandra R, Fisher WS, Hammock MK, McKeown CA: Trilateral retinoblastoma: ocular and pineal retinoblastomas. J Neurosurg 63:367–370, 1985

    Google Scholar 

  53. Hethcote HW, Knudson Jr AG: Model for the incidence of embryonal cancers: application to retinoblastoma. Proc Natl Acad Sci USA 75:2453–2457, 1978

    Google Scholar 

  54. Herman MM, Rubinstein LJ: Divergent glial and neuronal differentiation in a cerebellar medulloblastoma in an organ culture system: in vitro occurrence of synaptic ribbons. Acta Neuropathol 65:10–24, 1984

    Google Scholar 

  55. Wolfe DE: The epiphyseal cell: an electron-microscopic study of its intercellular relationships and intracellular morphology in the pineal body of the albino rat. Progr Brain Res 10:332–386, 1965

    Google Scholar 

  56. Pévet P: Secretory processes in the mammalian pinealocyte under natural and experimental conditions. Progr Brain Res 52:149–192, 1979

    Google Scholar 

  57. Dickson DH, Ramsey MS, Tonus JG: Synapse formation in retinoblastoma tumours. Br J Ophthalmol 60:371–375, 1976

    Google Scholar 

  58. Hassoun J, Gambarelli D, Peragut JC, Toga M: Specific ultrastructural markers of human pinealomas. A study of four cases. Acta Neuropathol 62:31–40, 1983

    Google Scholar 

  59. Varakis JN, ZuRhein GM: Experimental pineocytoma of the Syrian hamster induced by a human papovavirus (JC). A light and electron microscopic study. Acta Neuropathol 35:243–264, 1976

    Google Scholar 

  60. Koestner A, Swenberg JA, Wechsler W: Transplacental production with ethylnitrosourea of neoplasms of the nervous system in Sprague-Dawley rats. Am J Pathol 63:37–56, 1971

    Google Scholar 

  61. Copeland DD, Vogel FS, Bigner DD: The induction of intracranial neoplasms by the inoculation of avian sarcoma virus in perinatal and adult rats. J Neuropathol Exp Neurol 34:340–358, 1975

    Google Scholar 

  62. ZuRhein GM: Studies of JC virus-induced nervous system tumors in the Syrian hamster: a review. In: Sever JL, Madden DL (eds) Polyomaviruses and Human Neurological Diseases. New York, Alan R. Liss, 1983, pp 205–221

    Google Scholar 

  63. Stewart AM, Lennox EL, Sanders BM: Group characteristics of children with cerebral and spinal tumours. Br J Cancer 28:568–574, 1973

    Google Scholar 

  64. Scheithauer BW, Rubinstein LJ: Cerebral medulloepithelioma. Report of a case with multiple divergent neuroepithelial differentiation. Childs Brain 5:62–71, 1979

    Google Scholar 

  65. Sato T, Shimoda A, Takahashi T, Daita G, Goto S, Takamura H, Hirama M: Congenital cerebellar neuroepithelial tumor with multiple divergent differentiations. Acta Neuropathol 50:143–146, 1980

    Google Scholar 

  66. Ogawa K: Adenovirus 12-induced tumors — especially on the approach to experimental brain tumors. Trans Path Soc Japan 68:35–78, 1979 (in Japanese)

    Google Scholar 

  67. VandenBerg SR, Herman MM, Ludwin SK, Bignami A: An experimental mouse testicular teratoma as a model for neuroepithelial neoplasia and differentiation. I. Light microscopic and tissue and organ culture observations. Am J Pathol 79:147–168, 1975

    Google Scholar 

  68. Rajewsky MF: Chemical carcinogenesis in the developing nervous system. In: Santi L, Zardi L (eds) Theories and Models in Cellular Transformation. London, Academic Press, 1985, pp 156–171

    Google Scholar 

  69. Wechsler W. Old and new concepts of oncogenesis in the nervous system of man and animals. Progr Exp Tumor Res 17:219–278, 1972

    Google Scholar 

  70. Fujita S: The matrix cell and cytogenesis in the developing central nervous system. J Comp Neurol 120:37–42, 1963

    Google Scholar 

  71. The Boulder Committee: Embryonic vertebrate central nervous system: revised terminology. Anat Rec 166:257–261, 1970

    Google Scholar 

  72. Rubinstein LJ: Embryonal central neuroepithelial tumors and their differentiating potential. A cytogenetic view of a complex neuro-oncological problem. J Neurosurg 62:795–805, 1985

    Google Scholar 

  73. Langman J, Haden C: Formation and migration of neuroblasts in the spinal cord of the chick embryo. J Comp Neurol 138:419–432, 1970

    Google Scholar 

  74. Hollyday M, Hamburger V: An autoradiographic study of the formation of the lateral motor column in the chick embryo. Brain Res 132:197–208, 1977

    Google Scholar 

  75. Fujita H, Fujita S: Electron microscopic studies on the differentiation of the ependymal cells and the glioblast in the spinal cord of domestic fowl. Z Zellforsch 64:262–272, 1964

    Google Scholar 

  76. Glees P, Le Vay S: Some electron microscopical observations on the ependymal cells of the chick embryo spinal cord. J Hirnforsch 6:355–360, 1964

    Google Scholar 

  77. Levitt P, Cooper ML, Rakic P: Coexistence of neuronal and glial precursor cells in the cerebral ventricular zone of the fetal monkey: an ultrastructural immunoperoxidase analysis. J Neurosci 1:27–39, 1981

    Google Scholar 

  78. Levitt P, Cooper ML, Rakic P: Early divergence and changing proportions of neuronal and glial precursor cells in the primate cerebral ventricular zone. Dev Biol 96:472–484, 1983

    Google Scholar 

  79. Kleihues P, Rajewsky MF: Chemical neuro-oncogenesis: role of structural DNA modification, DNA repair and neural target cell population. Progr Exp Tumor Res 27:1–16, 1984

    Google Scholar 

  80. Brucher JM, Ermel AE: Central neuroblastoma induced by transplacental administration of methylnitrosourea in Wistar-R rats. An electron microscopic study. J Neurol 208:1–16, 1974

    Google Scholar 

  81. Mukai N, Kobayashi S: Primary brain and spinal cord tumors induced by human adenovirus type 12 in hamsters. J Neuropathol Exp Neurol 32:523–541, 1973

    Google Scholar 

  82. Mukai N: Human adenovirus-induced embryonic neuronal tumor phenotype in rodents. In: Zimmerman HM (ed) Progress in Neuropathology, vol. 3. New York, Grune & Stratton, 1976, pp 89–128

    Google Scholar 

  83. Tapscott SJ, Bennett GS, Holtzer H: Neuronal precursor cells in the chick neural tube express neurofilament proteins. Nature 292:836–838, 1981

    Google Scholar 

  84. Bennett GS, DiLullo C: Expression of a neurofilament protein by the precursors of a subpopulation of ventral spinal cord neurons. Dev Biol 107:94–106, 1985

    Google Scholar 

  85. Masuko S, Shimada Y: Neuronal cell-surface specific antigen(s) is expressed during the terminal mitosis of cells destinated to become neuroblasts. Dev Biol 96:396–404, 1983

    Google Scholar 

  86. Horren BC, Rubinstein LJ: Primary cerebral neuroblastomas. A clinicopathological study of 35 cases. Brain 99:735–756, 1976

    Google Scholar 

  87. Bennett Jr JP, Rubinstein LJ: The biological behavior of primary cerebral neuroblastoma: a reappraisal of the clinical course in a series of 70 cases. Ann Neurol 16:21–27, 1984

    Google Scholar 

  88. Guéneau G, Privat A, Drouet J, Court L: Subgranular zone of the dentate gyrus of young rabbits as a secondary matrix. Dev Neurosci 5:345–358, 1982

    Google Scholar 

  89. VandenBerg SR, May EE, Rubinstein LJ, Herman MM, Perentes EE, Vinores SA, Collins VP, Park TS: Desmoplastic supratentorial neuroepithelial tumors of infancy with divergent differentiation potential (‘desmoplastic infantile gangliogliomas’). A report on 11 cases of a distinctive embryonal tumor with favorable prognosis. J Neurosurg 66:58–71, 1987

    Google Scholar 

  90. Taratuto AL, Monges J, Lylyk P, Leiguarda R: Superficial cerebral astrocytoma attached to dura. Report of six cases in infants. Cancer 54:2505–2512, 1984

    Google Scholar 

  91. Brun A: The subpial granular layer of the foetal cerebral cortex in man. Its ontogeny and significance in congenital cortical malformations. Acta Pathol Microbiol Scand Suppl 179, 1965

  92. Mörk SJ, Rubinstein LJ: Ependymoblastoma. A reappraisal of a rare embryonal tumor. Cancer 55:1536–1542, 1985

    Google Scholar 

  93. Uzman LL: The histogenesis of the mouse cerebellum as studied by its tritiated thymidine uptake. J Comp Neurol 114:137–159, 1960

    Google Scholar 

  94. Fujita S, Shimada M, Nakamura T: H3-thymidine autoradiographic studies on the cell proliferation and differentiation in the external and internal granular layers of the mouse cerebellum. J Comp Neurol 128:191–208, 1986

    Google Scholar 

  95. Rakic P, Sidman RL: Supravital DNA synthesis in the developing human and mouse brain. J Neuropath Exp Neurol 27:246–276, 1968

    Google Scholar 

  96. Mareš V, Lodin Z, Šrajer J: The cellular kinetics of the developing mouse cerebellum. I. The generation cycle, growth fraction and rate of proliferation of the external granular layer. Brain Res 23:323–342, 1970

    Google Scholar 

  97. Rubinstein LJ: The cerebellar medulloblastoma: its origin, differentiation, morphological variants, and biological behavior. In: Vinken PJ, Bruyn GW (eds): Tumours of the Brain and Skull, Part III. Handbook of Clinical Neurology, vol. 18. Amsterdam, North-Holland, 1975, pp 167–193

    Google Scholar 

  98. Rubinstein LJ, Herman MM: The contribution of tissue and organ culture to the differentiating capabilities of the cerebellar medulloblastoma. In: Zeltzer PM, Pochedly C (eds) Medulloblastomas in Children. New Concepts in Tumor Biology, Diagnosis and Treatment. New York, Praeger, 1986, pp 37–57

    Google Scholar 

  99. Kadin ME, Rubinstein LJ, Nelson JS: Neonatal cerebellar medulloblastoma originating from the fetal external granular layer. J Neuropath Exp Neurol 29:583–600, 1970

    Google Scholar 

  100. Raaf J, Kernohan JW: Relation of abnormal collections of cells in posterior medullary velum of cerebellum to origin of medulloblastoma. Arch Neurol Psychiat 52:163–169, 1944

    Google Scholar 

  101. Rubinstein LJ, Northfield DWC: The medulloblastoma and the so-called ‘arachnoidal cerebellar sarcoma’. A critical re-examination of a nosological problem. Brain 87:379–412, 1964

    Google Scholar 

  102. Chatty EM, Earle KM: Medulloblastoma: a report of 201 cases with emphasis on the relationship of histologic variants to survival. Cancer 28:977–983, 1971

    Google Scholar 

  103. ZuRhein GM, Varakis JN: Perinatal induction of medulloblastomas in Syrian golden hamsters by a human polyoma virus (JC). Natl Cancer Inst Monogr 51:205–208, 1979

    Google Scholar 

  104. Nagashima K, Yasui K, Kimura J, Washizu M, Yamaguchi K, Mori W. Induction of brain tumors by a newly isolated JC virus (Tokyo-I strain). Am J Pathol 116:455–463, 1984

    Google Scholar 

  105. Hirakawa K, Suzuki K, Ueda S, Handa J: Fetal origin of medulloblastomas: evidence from growth analysis in two cases. Acta Neuropathol 70:227–234, 1986

    Google Scholar 

  106. Choi BH, Lapham LW: Radial glia in the human fetal cerebrum: a combined Golgi, immunofluorescent and electron microscopic study. Brain Res 148:295–311, 1978

    Google Scholar 

  107. Levitt P, Rakic P: Immunoperoxidase localization of glial fibrillary acidic protein in radial glial cells and astrocytes of the developing rhesus monkey brain. J Comp Neurol 193:815–840, 1980

    Google Scholar 

  108. Schmechel DE, Rakic P: Arrested proliferation of radial glial cells during midgestation in rhesus monkey. Nature 277:303–305, 1979

    Google Scholar 

  109. Choi BH: Radial glia of developing human fetal spinal cord: Golgi, immunohistochemical and electron microscopic study. Dev Brain Res 1:249–267, 1981

    Google Scholar 

  110. Pilkington GJ, Lantos PL: The development of experimental brain tumours. A sequential light and electron microscopy study of the subependymal plate. II. Microtumours. Acta Neuropathol 45:177–185, 1979

    Google Scholar 

  111. Vick NA, Lin MJ, Bigner DD: The role of the subependymal plate in glial tumorigenesis. Acta Neuropathol 40:63–71, 1977

    Google Scholar 

  112. Lewis PD: Cell proliferation in the postnatal nervous system and its relationship to the origin of gliomas. Semin Neurol 1:181–187, 1981

    Google Scholar 

  113. Choi BH, Kim RC, Lapham LW: Do radial glia give rise to both astroglial and oligodendroglial cells? Dev Brain Res 8:119–130, 1983

    Google Scholar 

  114. Choi BH, Kim RC: Expression of glial fibrillary acidic protein by immature oligodendroglia and its implications. J Neuroimmunol 8:215–235, 1985

    Google Scholar 

  115. Ludwin SK: Proliferation of mature oligodendrocytes after trauma to the central nervous system. Nature 308:274–275, 1984

    Google Scholar 

  116. Arenella LS, Herndon RM: Mature oligodendrocytes. Division following experimental demyelination in adult animals. Arch Neurol 41:1162–1165, 1984

    Google Scholar 

  117. Schmitt HP: Rapid anaplastic transformation in ‘gliomas’ of adulthood. ‘Selection’ in neuro-oncogenesis. Pathol Res Pract 176:313–323, 1983

    Google Scholar 

  118. Kepes JJ, Fulling KH, Garcia JH: The clinical significance of ‘adenoid’ formations of neoplastic astrocytes, imitating metastatic carcinoma, in gliosarcomas. A review of five cases. Clin Neuropathol 1:139–150, 1982

    Google Scholar 

  119. Peters JM, Preston-Martin S, Yu MC: Brain tumors in children and occupational exposure of parents. Science 213:235–237, 1981

    Google Scholar 

  120. Gold E, Gordis L, Tonascia J, Szklo M: Increased risk of brain tumors in children exposed to barbiturates. J. Natl Cancer Inst 61:1031–1034, 1978

    Google Scholar 

  121. Preston-Martin S, Yu MC, Benton B, HendersonBE: N-nitroso compounds and childhood brain tumors: a case-control study. Cancer Res 42:5240–5245, 1982

    Google Scholar 

  122. Houff SA, London WT, ZuRhein GM, Padgett BL, Walker DL, Sever JL: New world primates as a model of viral-induced astrocytomas. In: Sever JL, Madden DL (eds): Polyomaviruses and Human Neurological Diseases. New York, Alan R. Liss, 1983, pp 223–226

    Google Scholar 

  123. London WT, Houff SA, McKeever PE, Wallen WC, Sever JL, Padgett BL, Walker DL: Viral-induced astrocytomas in squirrel monkeys. In: Sever JL, Madden DL (eds): Polyomaviruses and Human Neurological Diseases. New York, Alan R. Liss, 1983, pp 227–237

    Google Scholar 

  124. Meinke W, Goldstein DA, Smith RA: Simian virus 40-related DNA sequences in a human brain tumor. Neurology 29:1590–1594, 1979

    Google Scholar 

  125. Krieg P, Amtmann E, Jonas D, Fischer H, Zang K, Sauer G: Episomal simian virus 40 genomes in human brain tumors. Proc Natl Acad Sci USA 78:6446–6450, 1981

    Google Scholar 

  126. Ibelgaufts H, Jones KW. Papovavirus-related RNA sequences in human neurogenic tumours. Acta Neuropathol 56:118–122, 1982

    Google Scholar 

  127. Castaigne P, Rondot P, Escourolle R, Ribadeau-Dumas JL, Cathala F, Hauw J-J: Leucoencéphalopathie multifocale progressive et ‘gliomas’ multiples. Rev Neurol 130:379–392, 1974

    Google Scholar 

  128. Sima AAF, Finkelstein SD, McLachlan DR: Multiple malignant astrocytomas in a patient with spontaneous progressive multifocal leukoencephalopathy. Ann Neurol 14:183–188, 1983

    Google Scholar 

  129. Heyck H: Glioblastom nach Leukotomie. Mschr Psychiat Neurol 128:180–188, 1954

    Google Scholar 

  130. Manuelidis EE: Glioma in trauma. In: Minkler J (ed): Pathology of the Nervous System, vol. 2. New York, McGraw-Hill, 1971, pp 2237–2240

    Google Scholar 

  131. Finkenmeyer H, Behrend RC: Hirntrauma und Gliomentstehung. Zbl Neurochir 16:318–324, 1956

    Google Scholar 

  132. Witzmann A, Jellinger K, Weiss R: Glioblastoma multiforme nach Kopfschuss. Neurochirurgia 24:202–206, 1981

    Google Scholar 

  133. Anderson M, Hughes B, Jefferson M, Smith WT, Waterhouse JAH: Gliomatous transformation and demyelinating diseases. Brain 103:603–622, 1980

    Google Scholar 

  134. Ho K-L, Wolfe DE: Concurrence of multiple sclerosis and primary intracranial neoplasma. Cancer 47:2913–2919, 1981

    Google Scholar 

  135. Judge MR, Eden OB, O'Neill P: Cerebral glioma after cranial prophylaxis for acute lymphoblastic leukaemia. Br Med J 289:1038–1039, 1984

    Google Scholar 

  136. Zochodne DW, Cairncross JG, Arce FP, MacDonald JCF, Blume WT, Girvin JP, Kaufmann JCE: Astrocytoma following scalp radiotherapy in infancy. Can J Neurol Sci 11:475–478, 1984

    Google Scholar 

  137. Raffel C, Edwards MSB, Davis RL, Ablin AR: Postirradiation cerebellar glioma. J Neurosurg 62:300–303, 1985

    Google Scholar 

  138. Liwnicz BH, Berger TS, Liwnicz RG, Aron BS: Radiation-associated gliomas: a report of four cases and analysis of postradiation tumors of the central nervous system. Neurosurgery 17:436–445, 1985

    Google Scholar 

  139. Albo V, Miller D, Leiken S, Sather H, Hammond D: Nine brain tumors (BT.) as a late effect in children ‘cured’ of acute lymphoblastic leukemia (ALL) from a single protocol study. Proc Am Soc Clin Oncol 4:172, 1985

    Google Scholar 

  140. Anderson JR, Treip CS: Radiation-induced intracranial neoplasms. A report of three possible cases. Cancer 53:426–429, 1984

    Google Scholar 

  141. Malone M, Lumley H, Erdohazi M: Astrocytoma as a second malignancy in patients with acute lymphoblastic leukemia. Cancer 57:1979–1985, 1986

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rubinstein, L.J. The correlation of neoplastic vulnerability with central neuroepithelial cytogeny and glioma differentiation. J Neuro-Oncol 5, 11–27 (1987). https://doi.org/10.1007/BF00162761

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00162761

Keywords

Navigation