Skip to main content
Log in

Calculations of one-, two- and three-bond nuclear spin-spin couplings in a model peptide and correlations with experimental data

  • Research Papers
  • Published:
Journal of Biomolecular NMR Aims and scope Submit manuscript

Summary

We present ab initio calculations of the Fermi contact term and experimental correlations of six coupling constants, 3JH N H α, 1JC α H α, 2JC′H α, 1JC α N, 2JC α N and 1JC′N, in a peptide as functions of the backbone dihedral angles, ϕ and ψ. Given estimates of experimental uncertainties, we find semiquantitative experimental correlations for 3JH N H α, 1JC α N and 2JC α N, qualitative correlations for 1JC α H α and 2JC′H α, but no experimental correlations of practical utility for 1JC′N, owing to its complex dependence on at least four dihedral angles. Errors in the estimation of dihedral angles from X-ray crystallographic data for proteins, which result from uncertainties in atom-to-atom distances, place substantial limitations on the quantitative reliability of coupling constant calculations fitted to such data. In the accompanying paper [Edison, A.S. et al., J. Biomol. NMR, 4, 543–551] we apply the results of the coupling constant calculations presented here to the estimation of ϕ and ψ angles in staphylococcal nuclease from experimental coupling constants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

AO:

atomic orbital

BPTI:

basic pancreatic trypsin inhibitor (bovine)

CI-2:

chymotrypsin inhibitor 2

E.COSY:

exclusive correlation spectroscopy (Griesinger et al., 1986)

nJAB :

single bond (n=1), geminal (n=2), or vicinal (n=3) coupling constant between nuclei A and B

LCAO:

linear combination of atomic orbitals

NBO:

natural bond orbital

n:

lone pair orbitals

σ:

bonding orbitals

σ* :

antibonding orbitals

ψ:

dihedral angle or molecular orbital wave function; r2, correlation coefficient

RHF:

restricted Hartree-Fock; rmsd, root-mean-square deviation

3-21G and 6-31G* :

molecular orbital basis set designations (Hehre et al., 1986)

References

  • Aue, W.P., Bartholdi, E. and Ernst, R.R. (1976) J. Chem. Phys., 64, 2220–2246.

    Google Scholar 

  • Babu, Y.S., Bugg, C.E. and Cook, W.J. (1988) J. Mol. Biol., 204, 191–204.

    Google Scholar 

  • Barfield, M., and Grant, D.M. (1965) Adv. Magn. Reson., 1, 149–193.

    Google Scholar 

  • Barfield, M. and Johnston Jr., M.D. (1972) Chem. Rev., 73, 53–73.

    Google Scholar 

  • Barfield, M., Hruby, V.J. and Meraldi, J.-P. (1976) J. Am. Chem. Soc. 98, 1308–1314.

    Google Scholar 

  • Barfield, M. and Smith, W.B. (1992) J. Am. Chem. Soc., 114, 1574–1581.

    Google Scholar 

  • Bax, A., Max, D. and Zax, D. (1992) J. Am. Chem. Soc., 114, 6923–6925.

    Google Scholar 

  • Bax, A. and Grzesiek, S. (1993) Acc. Chem. Res., 26, 131–138.

    Google Scholar 

  • Blake, P.R., Lee, B., Summers, M.F., Adams, M.W.W., Park, J.-B., Zhou, Z.H. and Bax, A. (1992) J. Biomol. NMR, 2, 527–533.

    Google Scholar 

  • Bystrov, V.F. (1976) Prog. NMR Spectrosc., 10, 44–81.

    Google Scholar 

  • Chary, K.V., Otting, G. and Wüthrick, K. (1991) J. Magn. Reson., 93, 218–224.

    Google Scholar 

  • Creighton, T.E. (1984) Proteins: Structures and Molecular Properties, Freeman, New York, NY.

    Google Scholar 

  • Delaglio, F., Torchia, D.A. and Bax, A. (1991) J. Biomol. NMR, 1, 439–446.

    Google Scholar 

  • Deisenhofer, J. and Steigemann, W. (1975) Acta Crystallogr., B31, 238–250.

    Google Scholar 

  • Edison, A.S., Westler, W.M. and Markley, J.L. (1991) J. Magn. Reson., 92, 434–438.

    Google Scholar 

  • Edison, A.S., Markley, J.L. and Weinhold, F. (1993) J. Phys. Chem., 97, 11657–11665.

    Google Scholar 

  • Edison, A.S., Weinhold, F., Westler, W.M. and Markley, J.L. (1994) J. Biomol. NMR 4, 543–551.

    Google Scholar 

  • Egli, H. and Von Philipsborn, W. (1981) Helv. Chim. Acta 64, 976–988.

    Google Scholar 

  • Ernst, R.R., Bodenhausen, G. and Wokaun, A. (1987) Principles of Nuclear Magnetic Resonance in One and Two Dimensions, Oxford University Press, New York, NY.

    Google Scholar 

  • Foster, J.P. and Weinhold, F. (1980) J. Am. Chem. Soc., 102, 7211–7218.

    Google Scholar 

  • Gil, V.M.S. and Von Philipsborn, W. (1989) Magn. Reson. Chem., 27, 409–430.

    Google Scholar 

  • Griesinger, C., Sørensen, O.W. and Ernst, R.R. (1986) J. Chem. Phys. 85, 6837–6843.

    Google Scholar 

  • Griesinger, C., Sørensen, O.W. and Ernst, R.R. (1989) J. Magn. Reson., 84, 14–63.

    Google Scholar 

  • Griesinger, C. and Eggenberger, U. (1992) J. Magn. Reson., 97, 426–434.

    Google Scholar 

  • Haasnoot, C.A.G., De Leeuw, F.A.A.M. and Altona, C. (1980) Tetrahedron, 36, 2783–2792.

    Google Scholar 

  • Hansen, P.E., Feeney, J. and Roberts, G.C.K. (1975) J. Magn. Reson., 17, 249–261.

    Google Scholar 

  • Hansen, P.E. (1981) Prog. NMR Spectrosc. 14, 175–296.

    Google Scholar 

  • Harbison, G.S. (1993) J. Am. Chem. Soc., 115, 3026–3027.

    Google Scholar 

  • Head-Gordon, T., Head-Gordon, M., Frisch, M.J., Brooks III, C.L. and Pople, J.A. (1991) J. Am. Chem. Soc. 113, 5989–5997.

    Google Scholar 

  • Hehre, W.J., Radom, L., Schleyer, P.v.R. and Pople, J.A. (1986) Ab Initio Molecular Orbital Theory, Wiley, New York, NY.

    Google Scholar 

  • Jameson, C.J. and Damasco, M.C. (1970) Mol. Phys., 18, 491–504.

    Google Scholar 

  • Karplus, M. (1959) J. Chem. Phys., 30, 11–15.

    Google Scholar 

  • Karplus, M. (1963) J. Am. Chem. Soc., 85, 2870–2871.

    Google Scholar 

  • Kay, L.E., Brooks, B., Sparks, S.W., Torchia, D.A. and Bax, A. (1989) J. Am. Chem. Soc., 111, 5488–5490.

    Google Scholar 

  • Kowalewski, J., Laaksonen, A., Roos, B. and Siegbahn, P.J. (1979) J. Chem. Phys., 71, 2896–2902.

    Google Scholar 

  • Kowalewski, J. (1982) Annu. Rev. NMR Spectrosc., 12, 81–176.

    Google Scholar 

  • Laaksonen, A. and Kowalewski, J. (1981) J. Am. Chem. Soc., 103, 5277–5283.

    Google Scholar 

  • Lee, W.S. and Schulman, J.M. (1979) J. Am. Chem. Soc., 101, 3182–3184.

    Google Scholar 

  • Levy, G.C. and Lichter, R.L. (1979) Nitrogen-15 Nuclear Magnetic Resonance Spectroscopy, Wiley New York, NY.

    Google Scholar 

  • Loll, P.J. and Lattman, E.E. (1989) Protein Struct. Funct. Genet., 5, 183–201.

    Google Scholar 

  • Ludvigsen, S., Andersen, K.V. and Poulsen, F.M. (1991) J. Mol. Biol., 217, 731–736.

    Google Scholar 

  • Madsen, J.C., Sørensen, O.W., Sørensen, P. and Poulsen, F. (1993) J. Biomol. NMR 3, 239–244.

    Google Scholar 

  • Markley, J.L. and Kainosho, M. (1993) In NMR of Biological Molecules (Ed., Roberts, G.C.K.) Practical Approach Series, Oxford Press, New York, NY, pp. 101–152.

    Google Scholar 

  • Marshall, J.L., Walter, S.R., Barfield, M., Marchand, A.P., Marchand, N.W. and Segre, A.L. (1976) Tetrahedron, 32, 537–542.

    Google Scholar 

  • McPhalen, C.A. and James, M.N.G. (1987) Biochemistry, 26, 261–269.

    Google Scholar 

  • Mierke, D.F., Grdadolnik, S.G. and Kessler, H. (1992) J. Am. Chem. Soc., 114, 8283–8284.

    Google Scholar 

  • Mohanakrishnan, P. and Easwaran, K.R.K. (1979) Org. Magn. Reson., 12, 196–198.

    Google Scholar 

  • Montelione, G.T., Winkler, M.E., Rauenbuhler, P. and Wagner, G. (1989) J. Magn. Reson., 82, 198–204.

    Google Scholar 

  • Neuhaus, D., Wagner, G., Vasák, M. Kägi, J.H.R. and Wüthrich, K. (1984) Eur. J. Biochem., 143, 659–667.

    Google Scholar 

  • Pachler, K.G.R. (1972) J. Chem. Soc. Perkin Trans.II, 1936–1940.

    Google Scholar 

  • Pardi, A., Billeter, M. and Wüthrich, K. (1984) J. Mol. Biol., 180, 741–751.

    Google Scholar 

  • Pople, J.A. and Santry, D.P. (1964) Mol. Phys., 8, 1–18.

    Google Scholar 

  • Pople, J.A. and Bothner-By, A.A. (1965) J. Chem. Phys. 42, 1339–1349.

    Google Scholar 

  • Ramsey, N.F. (1953) Phys. Rev., 91, 303–307.

    Google Scholar 

  • Reed, A.E., Weinstock, R.B. and Weinhold, F. (1985) J. Chem. Phys., 83, 735–746.

    Google Scholar 

  • Reed, A.E., Curtiss, L.A. and Weinhold, F. (1988) Chem. Rev. 88, 899–926.

    Google Scholar 

  • Reed, A.E. and Weinhold, F. (1991) Isr. J. Chem., 31, 277–285.

    Google Scholar 

  • Schmidt, M.W., Baldridge, K.K., Boatz, J.A., Jensen, J.H., Koseki, S., Gordon, M.S., Nguyen, K.A., Windus, T.L. and Elbert, S.T. (1990) QCPE Bull., 10, 52–54.

    Google Scholar 

  • Vuister, G.W. and Bax, A. (1992) J. Biomol. NMR, 2, 401–405.

    Google Scholar 

  • Vuister, G.W., Delaglio, F., and Bax, A. (1992) J. Am. Chem. Soc., 114, 9674–9675.

    Google Scholar 

  • Vuister, G.W., Delaglio, F. and Bax, A. (1993) J. Biomol. NMR, 3, 67–80.

    Google Scholar 

  • Wagner, G., Hyberts, S.G. and Havel, T.F. (1992) Annu. Rev. Biophys. Biomol. Struct., 21, 167–198.

    Google Scholar 

  • Walter, J. and Huber, R. (1983) J. Mol. Biol., 167, 911–917.

    Google Scholar 

  • Wider, G., Neri, D., Otting, G. and Wüthrich, K. (1989) J. Magn. Reson., 85, 426–431.

    Google Scholar 

  • Wlodawer, A., Walter, J., Huber, R. and Sjölin, L. (1984) J. Mol. Biol., 180, 301–329.

    Google Scholar 

  • Wolfram, S. (1991) Mathematica: A System for Doing Mathematics by Computer, 2nd ed., Addison-Wesley, Redwood City, CA.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Edison, A.S., Markley, J.L. & Weinhold, F. Calculations of one-, two- and three-bond nuclear spin-spin couplings in a model peptide and correlations with experimental data. J Biomol NMR 4, 519–542 (1994). https://doi.org/10.1007/BF00156618

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00156618

Keywords

Navigation