Skip to main content
Log in

Spectrophotometric analysis of sodium fluorescein aqueous solutions. Determination of molar absorption coefficient

  • Published:
International Ophthalmology Aims and scope Submit manuscript

Abstract

The usefulness of sodium fluorescein (SF) and related physical parameters were analysed. Two factors that may affect the molar absorption coefficient (ɛ) of this compound were the presence of impurities and the pH of the solution. As discrepant values can be found in the literature for that coefficient, a purification technique was used and SF quantification was performed according to sodium concentration determined by atomic absorption spectrophotometry. The molar absorption coefficient of the SF solution in phosphate buffer pH 7.4 was determined. To study the influence of pH on ɛ determination, absorption spectra at pH 1, 3, 5, and 10 were also analysed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Passmore JW, King JH. Vital staining of conjunctiva and cornea. Arch S.A. Ophthalmol 1955; 55: 568–74.

    Google Scholar 

  2. Anderson JR. Aids to corneal staining. Ophthalmologica 1949; 118: 444–49.

    Google Scholar 

  3. Lebensohn JE. Fluorescein in ophthalmology. Am J ophthalmol 1969; 67: 272–74.

    Google Scholar 

  4. Bron AJ, Tripathi RC. Cystic disorders of the corneal epithelium. I Clinical aspects. Br J Ophthalmol 1973; 57: 361–75.

    Google Scholar 

  5. Bron AJ, Brown NA. Some superficial corneal disorders. Trans Ophthalmol Soc UK 1971; 91: 13–29.

    Google Scholar 

  6. Maurice DM. A new objective fluorophotometer. Exp Eye Res 1963; 2: 33–38.

    Google Scholar 

  7. Cunha-Vaz J, Faria de Abreu JR, Campos AJ, Figo GM. Early breakdown of the blood retinal barrier in diabetes. Br J Ophthalmol 1975; 59: 649–56.

    Google Scholar 

  8. Cunha-Vaz JG, Fonseca JR, Abreu JF. Vitreous fluorophotometry and retinal blood flow studies in proliferative retinopathy. Graefes Arch Clin Exp Ophthalmol 1978; 207: 71–76.

    Google Scholar 

  9. Zeimer RC, Cunha-Vaz JG, Johnson ME. Studies on the technique of vitreous fluorophotometry. Invest Ophthalmol Vis Sci 1982; 22: 668–74.

    Google Scholar 

  10. Zeimer RC, Blair NP, Cunha-Vaz JG. Vitreous fluorophotometry for clinical research. II Method of data acquisition and processing. Arch Ophthalmol 1983; 101: 1757–61.

    Google Scholar 

  11. Boot JP, Van Best JA, Tjin A Tsoi EWJ, Kappelhof JA, Oosterhuis JA. Plasma fluorescein decay determination during fluorophotometry. Doc Ophthalmol 1987; 65: 403–22.

    Google Scholar 

  12. Mota MC, Cunha-Vaz JG. Studies on fluorescein concentration in the plasma. Graefes Arch Clin Exp Ophthalmol 1985; 222: 170–72.

    Google Scholar 

  13. Lavorel J. Influence of concentration on the absorption spectrum and the action spectrum of fluorescence of dye solutions. J Phys Chem 1957; 61: 1600–05.

    Google Scholar 

  14. Machwe MK. Effect of concentration on fluorescence spectrum of fluorescein. Current Sci (India) 1970; 18: 412–13.

    Google Scholar 

  15. Umberger JQ, LaMer VK. The kinetics of diffusion controlled molecular and ionic reactions in solution as determined by measurements of the quenching of fluorescence. Am Chem Soc J 1945; 67: 1099–1109.

    Google Scholar 

  16. Van Duren BL. Effect of the environment on the fluorescence of aromatic compounds in solution. Chem Rev 1961; 63: 325–54.

    Google Scholar 

  17. Levshin VL, Krotova LV. The association nature of the concentration quenching of the luminescence of Na-fluorescein in aqueous and glycerin solutions. Opthalm Spectrosc 1962; 13: 457–62.

    Google Scholar 

  18. Pant DD, Pant HC. Aggregate emission in uranin solutions. Indian J Pure Appl Phys 1968; 6: 238–43.

    Google Scholar 

  19. Dandliker WB, Alonso R. Purification of fluorescein and fluorescein derivatives by cellulose ion exchange chromatography. Immunochemistry 1967; 4: 191–96.

    Google Scholar 

  20. Forster LS, Dudley D. The luminescence of fluorescein dyes. J Phys Chem 1962; 66: 838–40.

    Google Scholar 

  21. Seybold P, Gouterman M, Callis J. Calorimetric, photometric, and lifetime determinations of fluorescence yields of fluorescein dyes. Photochem Photobiol 1969; 9: 229–42.

    Google Scholar 

  22. Zanker V, Peter W. Die prototropen Formen des Fluoresceins. Chem Ber 1958; 91: 572–80.

    Google Scholar 

  23. Bouchard J. Contribution a l'etude de fluorescence des solutions. J Chim Phys 1936; 33: 64–71.

    Google Scholar 

  24. Boutarica A, Roy M. Pouvoir fluorescent des solutions d'uranine en function de leur concentration en ions H+. Comp Rend Acad Sci 1939; 209: 162–64.

    Google Scholar 

  25. Hiramoto R, Bernecky J, Jurand J, Hamlin M. The effect of hydrogen ion concentration on fluorescent labelled antibodies. J Histochem Cytochem 1964; 12: 271–74.

    Google Scholar 

  26. Mecklenburg W, Valentiner S. Uber die Abhangigkeit der Fluoreszenz von der Konzentration. Physik Zeitschr 1914; 15: 267–74.

    Google Scholar 

  27. Romanchuk MD, Kenneth G. Fluorescein. Physicochemical factors affecting its fluorescence. Surv Ophthalmol 1982; 26: 269–83.

    Google Scholar 

  28. Rozwadowski M. Effect of pH on fluorescence of fluorescein solutions Acta Phys Pol 1961; 20: 1005–17.

    Google Scholar 

  29. Shoften E, Habeeb A. The estimation of fluorescein in dilute solutions. J Pharm Pharmacol 1955; 7: 456–62.

    Google Scholar 

  30. Guibault GG. Practical fluorescence, theory, methods and techniques. New York: 1973; 23–28.

  31. Karykin AV, Babicheva GG. Effect of structure of aqueous solutions on the luminescence yield of dyes. Opthalm Spectrosc 1968; 24: 541–42.

    Google Scholar 

  32. Pringsheim P. Fluorescence and phosphorescence. New York: Interscience, 1949; 306–12.

    Google Scholar 

  33. Melhado LL, Peltz SW, Leytus SP, Mangel WF. p-Guanidinobenzoic acid esters of fluorescein as active-site titrants of serine proteases. J Am Chem Soc 1982; 104: 7299–306.

    Google Scholar 

  34. Hammond PR. Spectroscopic and laser properties of the dye chromogen red B. J Photochem 1979; 10: 467–71.

    Google Scholar 

  35. Delori FC, Castany MA, Webb RH. Fluorescence characteristics of sodium fluorescein in plasma and whole blood. Exp Eye Res 1978; 27: 417–25.

    Google Scholar 

  36. Matveets MA, Shcherbov DP, Akhmetova SD. Investigation of the spectrophotometric and luminescence properties of hidroxixanthene dyes in aqueous solutions. J Anal Chem SSSR 1979; 34: 807–12.

    Google Scholar 

  37. Grotte D, Mattox V, Brubaker R. Fluorescent, physiological and pharmacokinetics properties of fluorescein glucuronide. Exp Eye Res 1985; 40: 23–33.

    Google Scholar 

  38. Perrin DD & Armarego WL. Purification of laboratory chemicals. 3rd ed. New York: Pergamon Press, 1988.

    Google Scholar 

  39. Mchedlov-Petrosyan NO. Ionization constants of fluorescein. J Anal Chem SSSR 1979; 34: 812–15.

    Google Scholar 

  40. Campbell FW, Boyd TAS. The use of sodium fluorescein in assessing the rate of healing in corneal ulcers. Br J Ophthalmol 1950; 34: 545–49.

    Google Scholar 

  41. Cohen FH. Ein einfacher Apparat zur objektiven Fluorescenzmessung mittels einer Seleusperrschichtzelle. Recl Trav Chim Pays-Bas 1935; 54: 133–38.

    Google Scholar 

  42. Langham M, Wyber KC, Fluorophotometric apparatus for the objective determination of fluorescence in the anterior chamber of the living eye. Br J Ophthalmol 1954; 38: 52–57.

    Google Scholar 

  43. Rollefson GK, Dodgen HW. The dependence of the intensity of fluorescence on the composition of a fluorescing solution. J Chem Phys 1944; 12: 107–11.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mota, M.C., Carvalho, P., Ramalho, J. et al. Spectrophotometric analysis of sodium fluorescein aqueous solutions. Determination of molar absorption coefficient. Int Ophthalmol 15, 321–326 (1991). https://doi.org/10.1007/BF00128951

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00128951

Key words

Navigation