Skip to main content
Log in

Visualization of the subsarcolemmal cytoskeleton network of mouse skeletal muscle cells by en face views and application to immunoelectron localization of dystrophin

  • Papers
  • Published:
Journal of Muscle Research & Cell Motility Aims and scope Submit manuscript

Summary

The ultrastructural organization of the highly interconnected filamentous network underneath the sarcolemma as well as the role played by the muscle protein dystrophin within this cytoskeleton remain yet unclear. More accurate information has been obtained by using a method which provides three-dimensional en face views of large membrane areas applied to mouse cultured myotubes and isolated adult skeletal muscle fibres. Two levels have been distinguished in the cytoskeleton underlying the sarcolemma: the submembranous level, partly integrated into the membrane, and the cortical level, invading the proximal cytoplasmic space. Few differences have been found between the membrane cytoskeletons of myotubes issued from 14-day-old cultures and those of adult fibres. The comparison was done with cells where dystrophin is missing (mdx mouse muscle): surprisingly, the lack of dystrophin does not induce obvious or dramatic ultrastructural disorganization, either in the cortical cytoskeletal network or in the submembranous one. Immunogold labelling of either the central-rod or the C-terminal domain of dystrophin is not located among the cortical network. This study provides additional data on the spatial ordering of subsarcolemmal cytoskeletal elements: dystrophin does not appear as a filamentous structure entirely located among subsarcolemmal cytoskeleton but seems partly embedded in membranous material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • AGGELER, J. & WERB, Z. (1982) Initial events during phagocytosis by macrophages viewed from outside and inside the cell: membrane-particle interactions and clathrin. J. Cell Biol. 94, 613–23.

    Google Scholar 

  • BATTEN, B. E., AALBERG, J. J. & ANDERSON, E. (1980) The cytoplasmic filamentous network in cultured ovarian granulosa cells. Cell 21, 885–95.

    Google Scholar 

  • BERTHIER, C., AMSELLEM, J. & BLAINEAU, S. (1992) Organization of the cytoskeleton of dystrophin deficient mdx mouse myocytes-electron microscopic study. Biol. Cell 75, 7a.

    Google Scholar 

  • BERTHIER, C., AMSELLEM, J. & BLAINEAU, S. (1994) En face views of subsarcolemmal cytoskeleton network of mouse muscle fibres: immunoelectron localization of dystrophin. 9th European Cytoskeleton Forum, 7th–12th September 1994, Dundee, UK P1, Poster abstract 1.

  • BYERS, T. J., KUNKEL, L. M. & WATKINS, S. C. (1991) The subcellular distribution of dystrophin in mouse skeletal, cardiac, and smooth muscle. J. Cell Biol. 115, 411–21.

    Google Scholar 

  • CARPENTER, S., KARPATI, G., ZUBRZYCKA-GAARN, E., BULMAN, D. E., RAY, P. N. & WORTON, R. G. (1990) Dystrophin is localized to the plasma membrane of human skeletal muscle fibres by electron microscopic cytochemical study. Muscle & Nerve 13, 376–80.

    Google Scholar 

  • CULLEN, M. J., WALSH, J., NICHOLSON, L. V. B. & HARRIS, J. B. (1990) Ultrastructural localization of dystrophin in human muscle by using gold immunolabelling. Proc. R. Soc. Lond. B 240, 197–210.

    Google Scholar 

  • CULLEN, M. J., WALSH, J., NICHOLSON, L. V. B., HARRIS, J. B., ZUBRZYCKA-GAARN, E. E., RAY, P. N. & WORTON, R. G. (1991) Immunogold labelling of dystrophin in human muscle using an antibody to the last 17 amino acids of the C-terminus. Neuromusc Disord 1, 113–19.

    Google Scholar 

  • DePriester, W. (1991) Techniques for the visualisation of cytoskeletal components in Dyctyostelium discoideum. Electron Microsc. Rev. 4, 343–76.

    Google Scholar 

  • ERVASTI, J. M. & CAMPBELL, K. P. (1991) Membrane organization of the dystrophin-glycoprotein complex. Cell 66, 1121–31.

    Google Scholar 

  • ERVASTI, J. M. & CAMPBELL, K. P. (1993) Dystrophin and the membrane skeleton. Curr. Opin. Cell Biol. 5, 82–7.

    Google Scholar 

  • ERVASTI, J. M., OLHENDIECK, K., KAHL, S. D., GAVER, M. G. & CAMPBELL, K. P. (1990) Deficiency of a glycoprotein component of the dystrophin complex in dystrophic muscle. Nature 345, 315–19.

    Google Scholar 

  • FABBRIZIO, E., HARRICANE, M. C., PONS, F., LEGER, J. & MORNET, D. (1992) Properties of chicken cardiac dystrophin. Biol. Cell 76, 167–74.

    Google Scholar 

  • FABBRIZIO, E., LEGER, J., ANOAL, M., LEGER, J. J. & MORNET, D. (1993) Monoclonal antibodies targeted against the C-terminal domain of dystrophin or utrophin. FEBS Lett. 322, 10–14.

    Google Scholar 

  • GINJAAR, H. B., VanPaassen, H. B. M., DenDunnen, J. T., NGUYEN THI, Man, MORRIS, G. E., MOORMAN, A. F. M. & VanOmmen, G. J. B. (1992) Construction of dystrophin fusion proteins to raise targeted antibodies to different epitopes. FEBS Lett. 308, 293–7.

    Google Scholar 

  • HOFFMAN, E. P., BROWN, R. H. J. & KUNKEL, L. M. (1987) Dystrophin: the protein product of the Duchenne muscular dystrophy locus. Cell 51, 919–28.

    Google Scholar 

  • HOFFMAN, E. P., MORGAN, J. E., WATKINS, S. C. & PARTRIDGE, T. A. (1990) Somatic reversion/suppression of the mouse mdx phenotype in vivo. J. Neurol. Sci. 99, 9–25.

    Google Scholar 

  • HUARD, J., LARBRECQUE, C., DANSEREAU, G., ROBITAILLE, L. & TREMBLAY, J. P. (1991) Dystrophin expression in myotubes formed by the fusion of normal and dystrophic myoblasts. Muscle & Nerve 14, 178–82.

    Google Scholar 

  • IBRAGHIMOV-BESKROVNAYA, O., ERVASTI, J. M., LEVEILLE, C. J., SLAUGHTER, C. A., SERNETT, S. W. & CAMPBELL, K. P. (1992) Primary structure of dystrophin-associated glycoproteins linking dystrophin to the extracellular matrix. Nature 355, 696–702.

    Google Scholar 

  • ISOBE, Y. & SHIMADA, Y. (1986) Organization of filaments underneath the plasma membrane of developing chicken skeletal muscle cells in vitro revealed by the freeze-dry and rotary replica method. Cell Tissue Res. 244, 47–56.

    Google Scholar 

  • KOENIG, M., MONACO, A. P. & KUNKEL, L. M. (1988) The complete sequence of dystrophin predicts a rodshaped cytoskeletal protein. Cell 53, 219–28.

    Google Scholar 

  • KÜHL, U., Öcalan, M., TIMPL, R. & Von DerMark, K. (1986) Role of laminin and fibronectin in selecting myogenic versus fibrogenic cells from skeletal muscle cells in vitro. Dev. Biol. 117, 628–35.

    Google Scholar 

  • LAZARIDES, E. (1980) Intermediate filaments as mechanical integrators of cellular space. Nature 283, 249–56.

    Google Scholar 

  • LIU, S. C., DERICK, L. H. & PALEK, J. (1987) Visualization of the hexagonal lattice in the erythrocyte membrane skeleton. J. Cell Biol. 104, 527–36.

    Google Scholar 

  • LUNA, E. J. & HITT, A. L. (1992) Cytoskeleton-plasma membrane interactions. Science 258, 955–63.

    Google Scholar 

  • MASSA, R., CASTELLANI, L., SILVESTRI, G., SANCESARIO, G. & BERNARDI, G. (1994) Dystrophin is not essential for the integrity of the cytoskeleton. Acta Neuropathol. 87, 377–84.

    Google Scholar 

  • MASUDA, T., FUJIMAKI, N., OZAWA, E. & ISHIKAWA, H. (1992) Confocal laser microscopy of dystrophin localization in guinea pig skeletal muscle fibers. J. Cell Biol. 119, 543–8.

    Google Scholar 

  • MATSUMURA, K., ERVASTI, J. M., OHLENDIECK, K., KAHL, S. D. & CAMPBELL, K. P. (1992) Association of dystrophin-related protein with dystrophin-associated proteins in mdx mouse muscle. Nature 360, 588–91.

    Google Scholar 

  • MAZIA, D., SCHATTEN, G. & SALE, W. (1975) Adhesion of cells to surfaces coated with polylysine-applications to electron microscopy. J. Cell Biol. 66, 198–200.

    Google Scholar 

  • NERMUT, M. V. (1989) Strategy and tactics in electron microscopy of cell surfaces. Electron. Microsc. Rev. 2, 171–96.

    Google Scholar 

  • NERMUT, M. V. & NICOL, A. (1989) Colloidal gold immunoreplica method. In Colloidal gold: principles, methods and applications vol. 1 (edited by Hayat, M. A.) pp. 349–73, London: Academic Press.

    Google Scholar 

  • PARDO, J. V., SILICIANO, J. D. & CRAIG, S. W. (1983) A vinculin-containing cortical lattice in skeletal muscle: transverse lattice elements (‘costameres’) mark sites of attachment between myofibrils and the sarcolemma. Proc. Natl. Acad. Sci. USA 80, 1008–12.

    Google Scholar 

  • PIEROBON-BORNIOLI, S. (1981) Transverse sarcomere filamentous network of myofibril-sarcolemma attachment regions in cardiac muscle fibers. J. Cell Biol. 97, 1081–8.

    Google Scholar 

  • PONS, J., AUGIER, N., HEILIG, R., LEGER, J., MORNET, D. & LEGER, J. J. (1990) Isolated dystrophin molecules as seen by electron microscopy. Proc. Natl. Acad. Sci. USA 87, 7851–5.

    Google Scholar 

  • PORTER, G. A., DMYTRENKO, G. M., WINKELMANN, J. C. & BLOCH, R. J. (1992) Dystrophin colocalizes with betaspectrin in distinct subsarcolemmal domains in mammalian skeletal muscle. J. Cell Biol. 117, 997–1005.

    Google Scholar 

  • SABBADINI, R. A. & DAHMS, A. S. (1989) Biochemical properties of isolated transverse tubular membranes. J. Bioenerg. Biomembr. 21, 163–213.

    Google Scholar 

  • SATO, O., NONOMURA, Y., KIMURA, S. & MARUYAMA, K. (1992) Molecular shape of dystrophin. J. Biochem. 112, 631–6.

    Google Scholar 

  • SHEAR, C. R. & BLOCH, R. J. (1985) Vinculin in subsarcolemmal densities in chicken skeletal muscle: localization and relationship to intracellular and extracellular structures. J. Cell Biol. 101, 240–56.

    Google Scholar 

  • SMALL, J. V., FURST, D. O. & THORNELL, L. E. (1992) The cytoskeletal lattice of muscle cells. Eur. J. Biochem. 208, 559–72.

    Google Scholar 

  • SQUARZONI, S., SABATELLI, P., MALTARELLO, M. C., CATALDI, A., DiPrimio, R. & MARLDI, N. M. (1992) Localization of dystrophin COOH-terminal domain by the fracture-label technique. J. Cell Biol. 118, 1401–9.

    Google Scholar 

  • STRAUB, V., BITTNER, R. E., LEGER, J. J. & VOIT, T. (1992) Direct visualization of the dystrophin network on skeletal muscle fiber membrane. J. Cell Biol. 119, 1183–91.

    Google Scholar 

  • THORNELL, L. E. & PRICE, M. G. (1991) The cytoskeleton in muscle cells in relation to function. Bioch. Soc. Transac. 19, 1116–20.

    Google Scholar 

  • WAKAYAMA, Y. & SHIBUYA, S. (1990) Observations on the muscle plasma membrane-associated cytoskeletons of mdx mice by quick-freeze, deep-etch, rotary-shadow replica method. Acta Neuropathol. 80, 618–23.

    Google Scholar 

  • WAKAYAMA, Y. & SHIBUYA, S. (1991a) Gold-labelled dystrophin molecule in muscle plasmalemma of mdx control mice as seen by electron microscopy of deep etching replica. Acta Neuropathol. 82, 178–84.

    Google Scholar 

  • WAKAYAMA, Y. & SHIBUYA, S. (1991b) Antibody-decorated dystrophin molecule of murine skeletal myofiber as seen by freeze-etching electron microscopy. J. Electron. Microsc. 40, 143–5.

    Google Scholar 

  • WAKAYAMA, Y., SHIBUYA, S., JIMI, T., TAKEDA, A. & ONIKI, H. (1993) Size and localization of dystrophin molecule-immunoelectron microscopic and freeze etching studies of muscle plasma membranes of murine skeletal myofibers. Acta Neuropathol. 86, 567–77.

    Google Scholar 

  • WAKAYAMA, Y., SHIBUYA, S., TAKEDA, A., JIMI, T., NAKAMURA, Y. & ONIKI, H. (1995) Ultrastructural localization of the C-terminus of the 43-kd dystrophin-associated glycoprotein and its relation to dystrophin in normal murine skeletal myofiber. Am. J. Pathol. 146, 189–96.

    Google Scholar 

  • WATKINS, S. C., HOFFMAN, E. P., SLAYTER, H. S. & KUNKEL, L. M. (1988) Immunoelectron microscopic localization of dystrophin in myofibres. Nature 333, 863–6.

    Google Scholar 

  • YURCHENCO, P. D. & RUBEN, G. C. (1987) Basement membrane structure in situ: Evidence for lateral associations in the type IV collagen network. J. Cell Biol. 105, 2559–68.

    Google Scholar 

  • ZUBRZYCKA-GAARN, E. E., HUTTER, O. F., KARPATI, G., KLAMUT, H. J., BULMAN, D. E., HODGES, R. S., WORTON, R. G. & RAY, P. N. (1991) Dystrophin is tightly associated with the sarcolemma of mammalian skeletal muscle fibers. Exp. Cell Res. 192, 278–88.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Berthier, C., Amsellem, J. & Blaineau, S. Visualization of the subsarcolemmal cytoskeleton network of mouse skeletal muscle cells by en face views and application to immunoelectron localization of dystrophin. J Muscle Res Cell Motil 16, 553–566 (1995). https://doi.org/10.1007/BF00126439

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00126439

Keywords

Navigation